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This research addresses algorithmic approaches for solving two different, but related, types of optimization
problems. Firstly, the research considers the solution of a specific type of assignment problem using con-
tinuous methods. Secondly, the research addresses solving systems of inequalities (and equalities) in a
least square sense. The specific assignment problem has piece-wise linear additive separable server cost
functions, which are continuous everywhere except at zero, the point of discontinuity for the (0,11 assign-
ment condition. Continuous relaxation of the (0,11 constraints yields a linear programming problem. Solv-
ing the dual of the linear programming problem yields the complementarity conditions for a primal solution,
a system of linear inequalities and equalities. Adding equations to this system to enforce a {0,1} solution
in the relaxed solution set yields an augmented system, not necessarily linear. Methods to solve this sys-
tem, a system of linear inequalities and non-linear equations, in a least square sense are developed. The
specific assignment problem is a variation of problems which are amenable to strong continuous relaxation,
in that the solution set of the relaxed problem has been shown, experimentally, to often contain a (0,11
solution. However, if there are a large number of variables, efficient continuous (non-combinatoric)
methods are needed to locate (0,1) solutions, if such exist. This work addresses methods to find {0,1)
solutions using a least square formulation for solving systems of inequalities.

There is a large body of work dealing with nondifferentiable optimization, but the kind of nondifferentiability
posed by inequalities is of a special type. By considering a least square formulation of the problem:

(a) meaningful solutions can be found even in the infeasible case which naturally arises in
applications such as sequential quadratic programming;

(b) the problem becomes one (but not twice) differentiable;
(c) the generalized second order differential set has favorable properties that allow generalization

of classical second order non-linear least square algorithms;
(d) the fundamental computational subproblem, solving a system of linear equalities, is efficiently

solvable;
(e) the problem becomes numerically stable (in the sense of Robinson).

Common algorithmic approaches to solve nonlinear least square problems are adapted to solve systems
of inequalities. Local and global convergence results are developed, using properties of the Clarke
generalized subdifferential and Jacobian. Rates of convergence are analyzed. Applications of the
algorithms for solving the piece-wise linear assignment subproblem are developed and analyzed.
Application of the algorithms for solving linear programming problems, and linear and convex
complementarity problems are described.
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Notation

1) R- denotes the real n-dimensional space. Let P denote the vector of all ones in Wn.

2) -R1 denotes the positive orthant in W1.

3) Let S be a subset of W'.

- convex hull S denotes the set of all finite conwx combinations of elements of S.

- {d I x E S implies x + Ad E S for all A > 0} is the set of directions of recession of S.

- Let 6s(x) be the indicator function of the set, S. 6 s(x) := 0, if x E S; otherwise, 6s(x) := + x.

4) Let (., o) denote the inner product on W". Let S' := {yf (x, y) = 0, for all x E S} denote the orthogonal

complement of the set S. Given a E W', a scalar ce, let H := {xl (a,xý = a} denote the hyperplane

associated with a and a.

5) Let K C R1 be a convex cone, then denote K* := {yI (x, y) •_ 0 for all x E K}. K* is called the polar

of the cone K.

6) Let C' [Rfl, R31 be the set of all continuously once differential functions from R' to Rm. Similarly,

C2 [•, m]I is the set of all continuously twice differential functions from n'• to W'.

7) Let x E Rn. Let S C Rn. All vectors are written as column vectors.

- lIxII denotes the Euclidean norm of x.

- dist (x,S) := inf{IIx- YIIIY E S}.

- N(x, r) :- {y I Ilx - yll < r} denotes an open neighborhood of radius r about x.

- x+ denotes the Euclidean projection of x onto R.

-X := X-+ X+.

8) For a linear map G,

- denote uIGIl as the induced operator norm,

- denote K(G) as the null space of G.

9) A function f is Lipschitz of order p of rank -y 2 0 on a set S, if all x,y E S satisfy: Iif(x) - f(y)hI •

'YhtX - YllP

10) Let A be an m byn matrix and let I C {1,2...,m}.

- Denote III to mean the cardinality of the set I.

- A1 denotes the p by n matrix, where p J I 1, formed from the p rows of A indexed by I.

- At denotes the pseudo-inverse of the matrix A, the generalized inverse giving a least norm, least square

solution.

-Typically, denote index i, as the row of a matrix.

-Typically, denote index j, as the column of a matrix.

11) For a matrix A, an n by n matrix, denote IIAIIF, the Probenius norm of A,

\Ivilp =

v-ii



12) Let S be a subset of R. Usually f is a single-valued functional mapping of S into R, and F is a

single-valued mapping from S into W'. A property of f is satisfied a.e. on S, if this property is satisfied

everywhere on S except on a set of measure 0.

13) The Clarke subdifferential set of f at x is denoted Of(x). The gradient of f at x is denoted Vf((x).

14) The Clarke generalized Jacobian set of F at x is donoted (9F(x). The Jacobian of F(x) is denoted

JF(x). Similarly, the Clarke generalized Jacobian set of Vf(x) (sometimes referred to as a generalized

Hessian) is denoted 9Vf(x). The Hessian of f at x is denoted V2f(x).

15) In algorithms, iterates are typically denoted with the index, k. Greek lower case letters, such as a. 3, "-, A,

are usually positive scalars. Direction vectors are usually denoted d, and the algorithm scaled step is

usually s. Distinquished points, such as solution or accumulation points are usually denoted by a star

convention, such as x*.

16) The notation, "little o" means a = o(6) = - 0 as 6 -- 0.

17) •fk and AMk are symbols used in development of trust region algorithms, where at each iterate k.

LA := f(xk) - f(xk + sk) and AMM := Mk(O) - Mk(sk).
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1 Introduction

1.1 'lypes of Optimization Problems

Mathematical optimization methods include two distinct types, the combinatoric and the continuous meth-

ods. Unfortunately, practicing operations researchers often face problems which are neither purely continuous

nor combinatoric. For these problems, one -annot directly use the strong algorithms for continuous optirniza-

tion, nor the discrete methods. One such hybrid problem is the assignment problem, a useful formulation

for cost minimization problems. Assignment problems involve assigning jobs to servers, where one wishes to

match servers and jobs based on minimizing total costs. For a linear assignment, each server cost function is

linear. Realistic assignment problems cannot be adequately modeled by formulation as a linear assignment

problem, a computationally solvable problem. Practicing operations researchers look for methods allowing

representation of non-linear properties, when the server cost functions are highly non-linear. For example,

piece-wise linear approximations offer greater accuracy. Another typical modeling requirement may be sat-

isfied by approximation using a cost function having a flat minimum charge and linear rates beyond the

minimum charge. The added accuracy gained by allowing piece-wise linear server cost functions, even just

two pieces, is an attractive capability. The assignment problem having additively separable piece-wise linear

server cost functions can be solved by a strong relaxation into a linear program and then using Gomory

cutting plane methods for solution of {0, 1 1 assignment variables. However, these combinatoric methods are

unsatisfactory for large scale problems. Recent work addressing improved large scale methods include the

work of Conn and Cornu6jols[1990J, where the problem is simplified by solving for the unconstrained dual

using a projected gradient to derive search directions. Their work does not address specific methods for

finding {0, 1 } primal solutions generated by a dual solution, which is formidable in the case of large scale

problems. We develop a method, based on an algorithm for finding a least square solution of a system of

linear inequalities and non-linear equations, along with using common Gomory cutting planes to solve for

the {0, 1} solutions.

Recent work addressing least square methods for solving systems of inequalities centers on the research

of Han[1980, Burke[1983], and Han and Burke [19861. Han[1980 developed an algorithm for solving syslefrs

of linear inequalities using a search direction derived as the projection of the negative of the residuals onto the

subspace spanned by the coefficients of the unmet and active constraints. Further, he showed the existence

of a neighborhood of any solution, where the active and unmet constraints of the current iterate are a subset

of the active and unmet constraints of the next iterate. This neighborhood is now called an identification

neighborhood. This property assured finite termination of his algorithm.

In Burke[1983l and Burke and Han[19861, a function property called K-regular is defined, which guar-

antees a well-defined search direction at each iterate. While this class of functions may seem quite general,

Burke and Han[19861 cite "seemingly well-behaved situations" which are excluded from their K-regular class

of functions. Using this property, they extended the least square algorithm for solving finite dimensional



systems of inequalities and equalities of K-regular functions using the same type of projection as for the

linear case. Burke[19831 showed sufficiency conditions for global convergence of this "Gauss-Newton" type

search direction, as well as the steepest descent direction, using Armijo line search conditions to solve sys-

tems of inequalities of uniformly K-regular C' functions in a least square sense. For the non-linear case,

they used the Mangasarian Fromowitz constraint qualification condition, defined in section 6. to assure local

q-quadratic convergence in the special identification neighborhood of a stationary point having zero residual.

This dissertation addresses solving finite systems of inequalities of C2 convex functions and equalities

of C2 functions, in a least square sense. The advantage of first examining the class of convex functions

is that the strong theoretical properties are revealed, suggesting the needed properties to generalize for

the non-convex case. Further, for the assignment application subproblem addressed here, the inequalities

satisfy this C 2 convex condition. This dissertation extends, to the inequality case, the traditional methods

used to solve the equality case, including the Gauss-Newton, Levenberg-Marquardt, Newton's methods, and

quasi-Newton updates. We derive new adaptations of these methods to handle solving inequalities in a least

square sense. We show the sufficient local convergence properties to assure various convergence rates, such

as q-quadratic, or q-superlinear, or q-linear convergence. Further, we analyze and adapt the other major

global convergence method, the trust region method, to solve systems of inequalities in a least square sense.

We show sufficient properties for global convergence of our modified trust region algorithm to handle solving

systems of inequalities in a least square sense.

Another important result of this dissertation is that we have unified and greatly simplified the treatment

of the essential properties which govern global and local convergence when solving systems of inequalities in

a least square sense. For local convergence, the key property of the least square objective function which

unifies the underlying theory, regardless of the algorithm, is the special approximating property that the

generalized Clarke differential of the least square objective function possesses in the special identification

neighborhood of a designated point. This special approximating property assures that the second order

Taylor series expansion (based on generalized differential constructs) about each point x, sufficiently close

to a given point x., models the objective function at x. perfectly in the case of linear inequalities and with

second order accuracy in the nonlinear convex case. In contrast, a "true" analytic property would also assure

that the expansion about x. models each point x. The key global property is that the gradient of the least

square objective function for inequalities is uniformly Lipschitz of some rank -y on the lower level set of the

first iterate. The model trust region method, as with the Armijo line search, is shown to converge without

any added conditions, because of the uniform Lipschitzian property of the gradient of the objective function.

With our results, we demonstrate that one can use existing algorithms, with minor adaptations, to solv. for

least square solutions of systems of convex inequalities and non-linear equations.

2



1.2 Overview of Thesis

Section 1.3 in the Introduction gives background material on generalized differentiability, as in Clarkef1989],

as well as other results needed for the analysis of algorithm convergence properties. These properties are

the foundation of the dissertation development. Section 1.4 gives a description of a somewhat remarkablc,

yet simple, algorithm developed by S.P. Han to solve linear systems of inequalities in a least square sense.

The method to find search directions in Han's algorithm uses a singular value decomposition (SVD). Using

the result of Bramley[1992], that the search directions generated by QR factorization with column pivotinig

are bounded by the minimum norm solution provided by SVD, it follows that the method also converges

using the easier-to-compute search direction using a QR factorization with column pivoting. Since the QR

factorization with column pivoting is a finite computational process, and SVD is a convergent iterative

process, this change allows the method to be used as a practical algorithm. The ideas in this algorithm for

linear inequalities are a motivation to consider extension to other common minimization algorithms.

Section 1.5 in the Introduction describes background on algorithms for solving systems of equations in

a least square sense.

Section 2 develops the assignment problem, starting with the original primal problem in {O, I } variables,

strong relaxation to a linear programming primal, conversion to the relaxed dual, and characterization of

relaxed primal solutions from a dual solution. An example problem is given in section 2.4, and section 2.5

discusses methods to solve for {0, 1 } solutions within the solution set generated by a relaxed dual solution.

The treatment of least square solution of inequalities and equalities is done in sections 3 and 5. In section

3. 1, we develop the least square formulation for solving systems of linear inequalities and nonlinear equations.

In section 3.2, we state the definition of stability of a system of inequalities, based on Robinson[19761. We

show that the least square formulation for solving a system of inequalities is numerically stable to small

perturbations or inaccuracies in computation, using this definition of stability. In this section, we give an

example of a system of inequalities which is not stable, according to Robinson's definition of stability; but

the formulation of this system as a least square problem yields a system of inequalities which is stable.

In section 3.3, the identification neighborhood of a point is defined. The special approximating property

of the generalized differential constructs of the least square objective function is defined and verified for

the case of linear inequalities. In this case, the Taylor series based on second order generalized differential

construct models the least square objective function perfectly in an identification neighborhood.

In section 4.1, we develop the Gauss-Newton and Levenberg-Marquardt like algorithms and show local

convergence properties. We verify global convergence properties for the Armijo line search and develop and

analyze global trust region methods using a generalized Hessian model function in section 4.2. In section 4.3.

we analyze the least square objective function properties, which assure that the iterates, for which function

decreases, stay bounded. This assures the existence of an accumulation point among the iterates. This

function property is related to coercive behavior, which is defined in this section.

In section 5, we develop the case of systems of inequalities of convex C2 functions and nonlinear equa-

3



tions. In this section, we show the special approximating property of the Taylor series based on generalized

differential second order constructs of the least square objective function gives second order approximation

in an identification neighborhood of a point. From this, in section 6, we are able to develop and prove

local convergence for the Gauss-Newton like algorithm, Levenberg-Marquardt like algorithm, the Newton-

like algorithm and the special quasi-Newto-a symmetric secant update algorithm for non-linear least square

problems. We discuss global convergence results, noting the similarity to linear case.

In section 7, we develop and verify applications, specifically the solution of the assignment problem

of section 2. We develop and analyze a method to solve this problem, based on Han's algorithm, and on

the algorithm for solving systems of non-linear equations and linear inequalities in a least square sense. In

section 7.2, we show the application of using the least squares method to solve linear programs, specifically,

the relaxed linear program of the assignment problem. Thus, we show how one could use this method to solve

both subproblems of the assignment problem. In section 8, examples of the Gauss-Newton like algorithm

for solving the sample piece-wise linear assignment problem in section 2 are shown.

In section 9, conclusions and recommendations for further study are given.

1.3 Background on Generalized Differentials

We use properties of the ClarkeI1980 generalized Jacobian and subgradient in this research. Given a function,

F, where F : R .- Rm define F to be Lipschitz of rank -y of order I on some neighborhood of x, if for all

y in this neighborhood,

IIF(x) - F(y)II < 3yllx - yIl.

The Clarke subgradient set is defined for finite dimensional functions, which is convenient for calculations.

Let f : R' ý.- W be Lipschitz of order 1 of rank -y in a neighborhood of x . Let S be a set of Lebesque measure

0 in R', and let Q2 be the set of points where f fails to be differentiable. By Rademacher's Theorem, Q has

measure 0. Then the Clarke generalized subgradient of f at x is the set df(x), where

(9f(x) = convex hull {lim Vf(xi) I xi - x, xi 0 S, xt ý Q}.

If f is a finite convex function, then the Clarke generalized subgradient set is the same as the convex

subgradient set defin~d as:

df(x) := {x*j f(y) - f(x) • (x*, y - x), for all yE R"J}.

Now, consider F : R' -. R' and assume that F is Lipschitz of rank -y of order 1 on some neighborhood of

x. Let Qt be the set of points where F fails to be differentiable. Denote the Jacobian of F at x, as .JF(xi),

for x, . Q, where I E 1, some index set. Then the Clarke generalized Jacobian of F at x is the set OF(x),

where

OF(x) := convex hull {limJF(x1)Ix--, - x,xl • 2,lE I}.

4



OF(x) is a set of all m x n matrices which are convex combinations of a finite number of limits of a sequence

of Jacobians, JF(xi), as xL approaches x.

Some important properties of the generalized subgradient and Jacobian:

1. Of(x) is a nonempty convex compact subset of W'.

2. OF(x) is a nonempty convex compact subset of R".

3. If f is differentiable at x, then 9f(x) = Vf(x).

4. If F is differentiable at x, then of(x) JF(x).

5. aF is an upper semicontinuous mapping at x. That is, for any 8 > 0, there is a f > 0, such that for

y E N(x, (), a neighborhood of x, then:

aF(y) C aF(x) + 6B,,,,

where Bm, denotes the unit ball in Rn.

6. The Vector Mean Value Theorem for Generalized Jacobian: Let F be Lipschitz on an open convex set

U in R', and let u, v E U. Then one has:

F(v) - F(u) E convex hull 9F([u, vJ)(v -u),

where [u, v) represents the convex hull of {u, v}.

7. The Jacobian Chain Rule: Let F' : R' • R' be Lipschitz in a neighborhood of x and G: R, Rk be

Lipschitz near F(x). Then G o F is Lipschitz in some neighborhood of x and for any p E R', one has

a(G o F(x))p C convex hull {aG(F(x))aF(x)p},

and, if G is strictly differentiable, one has:

a(G o F(x))p = VG(F(x))DF(x)p.

Note that aF(x) is a set of mx n matrices, since F(x) is a map from W1 -- Rm, and aG(F(x)) denotes

the generalized Jacobian of G with respect to F(x), so that @G(F(x)) is a set of k x m matrices, and. thus,

a(G o F(x)) is a set of k x n matrices.

Some notational details are given here. In our discussions we compare the properties of Clarke general-

ized differentiaLbity versus the common notion of differentiability. For a functional f, first and second order

generalized differentiability properties are discussed. ror a function F, first order generalized differentiability

is discussed. For ordinary differentiable constructs, use the symbol V for the gradient, the symbol V 2 for

the Hessian. and use the caligraphic j symbol for the Jacobian. We reserve the use of the notation 9f and

OF to mean tfL Clarke generalized subgradient set and generalized Jacobian set, respectively, throughout

the dissertation unless otherwise noted. Suppose f, is twice differentiable. Suppose f2 is once-differentiable

and Vf 2 is Lipschitz continuous of rank -, on some neighborhood of x which assures that f2 is second order



generalized differentiable at x. Suppose F, is differentiable at x. and F2 is Lipschitz continuous of rank -r

on some neighborhood of x, thus assuring F2 is first order generalized differentiable at x. The notation for

svmbols used to denote differentiable and generalized differentiable constructs is summarized in Table 1,

Notation for I)itferential ('onstructs, below:

Order Differential Construct Generalized Differential Construct

First Order (Jacobian) j F1 (x) J 2(x) E dF2 (x)
Second Order (Hessian) V 2fI(x) H2 (x) E W f2 (x)

Table 1. Notation for Differential Constructs

WVe prove several propositions using the upper semicontinuity of 0Vf, where f is a CI convex function.

Proposition 1.3.1. Neighborhoud of Invertibilitv. to

Let f be a C' convex function (which implies that 9Vf(x) exists everywhere). Let x. be given and as-

sume any generalized Hessian H(x.) E PýVf(x.) is invertible. Then 3 = sup{fi H-'(x,)II 1 H(x.) E aVf(x. )}

satisfies 3 < +±x. Further, there exists a neighborhood N(x.,E) of x., such that if x tE N(x,,E), then any

ff(x) E i0Vf(x) is invertible and IlH-1 (x)ll < 23.

Proof. Since the generalized Hessian set is compact, then 3 = max{IIH-'(x.)Il I H(x,) E aVf(x.)}

is well-defined. Using the upper semicontinuity of the generalized Hessian map c9Vf, choose t small enough,

so that for x E V(x.,,) and any H(x) E OVf(x), then some H(x.) satisfies:

Jil(x) - H(x,) 11 < 1--
~~Xj1 23'

Then, for any x - N.(x.. (). any H(x) E aVf(x),

jjH - t(x.)(H (xr) - H (x.))Ii !_ IlH -'(x ,)Il IIH (x) - H (x ,)I !ý <__3•-• =
23 2'

By the theorem of invertibility of perturbed matrices, the matrix H(x) is invertible and satisfies:

II!!-(.)I < IIH-'(x.)11 < 23.
1 - IIH-(X.)(H(X) - H(x.))Il

If f is (C convex, using the definition of the generalized Hessian and the property that V2 is symmetric,

positive semi-definite for convex functions, then any generalized Hessian of a C' convex functional is sym-

metric, positive serni-definite, being a convex combination of a finite number of limits of positive semi-definite

matrices. See Hiriart-I rruty[19861.
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Proposition 1.3.2. Neighborhood of Positive Definiteness.

Let f be a C' convex function. Let x. be given. Assume that any generalized Hessian H(x. )E OV(x.)

is positive definite. Then there exists a neighborhood N(x., E) of x,, such that if x E N(x., (), any generalized

Hessiazi in H(x) E OVf(x) is positive definite.

Proof. Since the generalized Hessian set is compact, one can solve for H(x.) E aVf(X.) and d where

Ildll = :
A:= mn (d, H(x.)d) >0

subject to: IJdI =

H(x.) E aVf(x,).

Using the upper semicontinuity of the map aVf(x.), choose E > 0 small enough so that for x E N(x,, ).

any H(x) E aVf(x), then some H(x.) E aVf(x.) satisfies:

11H(x.) - H(x)ll <

Then, for any d where IldJ] = 1, by the Cauchy-Schwartz inequality,

A + (d, -H (x)d) < (d, (-H (x) + H (x ,))d)l < I lH(x) - H (x ,)II <_ A

which implies that (d, H(x)d) > - I

1.4 Han's Algorithm for Solving Linear Inequ dities

Han 119801 describes a method to solve a linear system of inequalities in a least square sense. We give a brief

description of this method, and develop and verify properties of the iterates.

Let A be a linear transformation from R' to Wm, and let b E Rm. Han's method provides a solution to

a system of inequalities, Ax < b, whether feasible or infeasible, by solving in a least square sense:

min f(x) := - ((Ax - b)+, (Ax - b)+), (1.4.1)
2

where (Ax - b)+ denotes the projection of Ax - b onto R+. The optimal residual z. = (Ax. - b) , where x.

solves (1.4.1), is unique and satisfies ATz, = 0. One can represent (1.4. 1) as a convex quadratic programming

problem with linear constraints in Rm+,:
I

min (z, z)
X,Z 2

subject to: (1.4.2)

Ax - b < z

Since Ax - b < z is strictly feasible, and since the objective function is convex and quadratic, there exists a

solution. The Karusch-Kuhn-Tucker (KKT) conditions for a solution (z, x) to (1.4.2) are:

Atz = 0,

Ax - b < z,

z>O,

(z,Ax-b-z) =0.
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Denote I(x) := {iI (a1,x-bi) > 0}. Inmost cases, the dependence of x is evident in context, so for simplicity

of notation, I = I(x) is used. Denote A, as the submatrix of A containing rows i E I. Notice that if I(x) =,

then x is a solution. Given an iterate Xk, let I = l(xk) and define the search direction dk as:

dk := -At(Alxk - bl), (al)

where At is the psuedo-inverse. At gives the unique least norm least square projection of -(AlXk - b1 ) onto

the subspace spanned by ai, i E I = I(Xk). Han verifies that:

ATAIdk = -AT(Axk - b)+ = -Vf(xk).

Calculate the next iterate, xk+ 1 := Xk + tkdk where Ak solves the exact line search:

1
minm -f(xk + Adk). (a2)

A~ 2

Han shows finitely terminating global convergence to a global (but possibly, non-unique) minimum. One can

express the algorithm succinctly, as follows: Let the iterate xk be given. Let dk be calculated as the unique

least norm solution of least square solution of:

A1 dk = -(AIXk - bl). (bl)

Let zk := (AlxA - bl), and let Ak > 0 be calculated so that:

((zk + \kAdk)+, Adk) = 0. (b2)

Because the line search function is piece-wise quadratic and convex, the exact minimizer Ak is easily found.

Let Xk+1 := Xk + Akdk-. If Vf(xk=l) = 0, then xk+1 solves (1.4.1); otherwise, iterate.

8



Properties

We show that the iterates satisfy Feveral other properties in the following.

1. For zk+I := Zk + AkAdk, since the objective function is convex, the subgradient relationship implies the

objective function decrease satisfies:

(zi , Zk - (zkT 1, zk+ 1 ) Ž2 2Ak JArdk, Aldk 2

2. (+, z+) r r+ 1 Z+ k Z+ ,Z kAk Z+

2. k ,z) -(rZ 1 , r+l) = (4+, zk)--(z+, zk+ AAd) (z -z1, zk), by property (b2) and properties

of the projection, z+.
3. If Ik = k+l, then -z+,z -( + 1,-Z

3(kz) - z+, zk+d) = (Zl, -AkAldk), by computation.

4. If Aldk= 0, then Xk is a solution, that is, AT+= 0.
5. f k =Ik 1,thn z+, +

5. If 4 Ik+k, then (,4-) - (z+IIz+1) = 0. Letting I = 4k and from I above, given that
(Z -+ \ z ) - + 12

kzj - (z4+l, zki+) Ž- 2\kJArdk, AjdkII 2 ,

then
(z1 , -AAldk) - 2(AAidk, Aidk) 0, i0

(zi + AAidk, -AAtdk) - (AArdk, Ardk) Ž0, (1.4.3)

-()\Aidk, Ardk,) > 0,

which implies that Aldk = 0. This means that, if at any time the index set of the current iterate Ik is

the same as the index set of the next iterate Ik+I, then the algorithm converges at step k + 1.

6. By the Projection Theorem, if dk solves (al), then for all p E R-,

(zi + Atdk, Ajp) 0,

which implies:
(zi + Afdk, Ap) 0.

7. By (bl) and (b2), there is a special conjugacy relationship of the current direction dk, and the new

direction dk+1:

ýAdk, A,,,. dk+ 1) 0 .

Han's algorithm has, in practice, fast convergence to a solution, whether feasible or infeasible. Han

shows that after a finite number of iterations, the iterates satisfy a relationship:

SIk C lk-+1, (1.4.4)

and from (1.4.3), this implies that after at most m more iterations, then the algorithm must converge. This

special neighborhood of a solution x. is called an identification neighborhood, in that unmet and active

constraints of the solution are a superset of those neighboring points' unmet and active constraints.
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1.5 Background on Least Square Algorithms for the Smooth Case

In addition to Han's method for solving a system of inequalities in a least square sense, there are other

minimization methods available for solving a system of equations in a least square sense, a smooth problem.

For example, if one wishes to solve for

F(x) = 0,

where F : R' ý- R" is C 2 , one defines

f(x) := -(F(x), F(x)) (1.5.1)
2

and solves:

inf f(x).

These minimization algorithms depend on two important calculations at each iterate x, deriving a search

direction, d, and a step size A, such that the step taken is Ad. Most minimization algorithms for least squares

find a descent direction by solving Bd = -Vf(x), for d, where Vf(x) is the gradient of the current iterate

and B is an n x n matrix determined by the algorithm. Denote J(x) := ,TF(x), the Jacobian of F at the

current iterate x.

1) If B = I, where I is the identity matrix, then d is the steepest descent direction.

2) If B = JT(x)J(x), then d is the Gauss-Newton direction.

3) If B = JT(x)J(x) + puI, where i > 0 is chosen to assure that J"(x)J(x) + ,Il is positive definite, then

d is the Levenberg-Marquardt direction.

4) If B is a rank I or rank 2 update approximation of the Hessian of f, which satisfies the quasi-Newton

condition, then d is a quasi-Newton direction.

5) If B = H(x), the Hessian of f at x, then d is the Newton direction.

Notice that calculating the search direction requires that the function f be at least once differentiable,

as in the case of the steepest descent direction. Newton's method uses second order information. An

important property of B is that it be positive definite to assure a descent direction. Therefore, one must

define an algorithm which accounts for this. If B is not positive definite, it may not be invertible, and the

Gauss-Newton and Newton's methods can be generalized by solving Bd = -g(x) in a least square sense.

There are specialized algorithms to solve least square problems. Using second order methods, such as

Newton's method or quasi-Newton methods to solve least square problems do not take advantage of the

special structure of the least square objective function. Notice that the Hessian of the objective function can

be expressed: V2 f(x) = JT (x)J(x) + Q(x), where

Q(X) := F()r(x),

where Fi(x) is the Hessian of Fi(x). In cases where the problem has a zero or small residual solution, Q(x)

is dominated by J(x)TJ(x) close to the solution. See Varah 119901 and Gill, Murray and Wright [19811. A
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small residual problem is characterized by properties of the Jacobian of F at the solution and the magnitude

of the residuals. Because of the special structure of the non-linear least squares problem, one usually uses

the Gauss-Newton method or the Levenberg-Marquardt algorithm for zero or small residual problems.

Newton's method and quasi-Newton methods are also applicable for solving non-linear least squares.

particularly for those having large residuals. In section 4 we adapt these methods to solve systems of

inequalities, by selecting a generalized Jacobian or Hessian at each iterate.

Inexact line search methods compare the predicted step size and the decrease in function value versus

the actual step size and function value. For example, given a, 3, such that 0 < a < 3 < 1, the Armijo line

search conditions require A to satisfy,

f(x + Ad) < f(x) + a(g(x), Ad),
(1.5.2)

(g(x + Ad), Ad) 2! O(g(x), Ad).

Conditions on the function f which assure the existence of A to satisfy (1.5.2) are that Vf be continuous,

that the search direction d is a descent direction of f at x, and that if(x + Ad) I A > 0} is bounded below.

The model trust region (or restricted step) method uses a model function, typically a second order

(Taylor series) approximation of f at x to compare the predicted versus actual decrease in the function,

adjusting the step size appropriately. Suppose M(s) := f(x) + (g(x), s) + ½(s, H(x)s), where g(x) is the

gradient of f at x and H(x) is the Hessian of f(x). Then the Taylor series approximation gives: f(x + s)

M(s), about x. The method finds a specific step, s, to satisfy agreement between the model function and

the function f. An inital 6 > 0 is chosen. The subproblem below is solved for s:

min M(s) subject to Ilsil < 6. (1.5.3)
a

Calculate the ratio:
f(x)-f(x+s) _ f(x) - f(x + s) (1.5.4)

M(O) - M(s) f(x) - M(s)

1) If r < .25 , then set the new 6 :=- IsII/4.

If r > .75 , and Ilsil = 6, then set the new 6 := 26,

otherwise, set the new 6 := 6.

2) If r < 0, then set new x:= x; else, set new x := x + s.

The model trust region method may not take a step at each iteration, and the method does not require

that the Hessian be positive definite. The choices of parameter, above, for example, .25, and .75, are based

on computational experience. Solving subproblem (1.5.3) is often done approximately.

The model trust region method requires a second order approximation of the function. In section 4, we

show that using the generalized Hessian provides this approximation.
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2 Piece-wise Linear Assignment Problem

In this section, an assignment problem having a piece-wise lineza: objective cost function is described. The

piece-wise linear objective function of use here is the maximum of a constant function and one or several

linear functions. This problem is the motivation and an application of algorithms developed in sections 4

and 6. This type of piece-wise linear objective cost function is useful in modeling the costs of assigning jobs

to individual servers, each of which have fixed minimum charges and linear rates above the minimum. The

problem is expressed as a {0, 1 } programming problem for which a strong relaxation is derived. The dual

of the relaxed primal problem is derived, as well as optimality conditions for the relaxed primal solutions.

Alternative methods for solving for {0, 1 } solutions within the relaxed problem solution set are described

and compared.

This assignment problem belongs to a family of problems, called the uncapacitated facility location

problem It is a generalization of the problem described in Conn and Cornu6jols[19901.

2.1 Statement of Problem

Let i E I = {1,2,...,m} represent jobs to be assigned to servers j E J = {1,2,3,..n}. Let I' E Rm

represent the unit demand vector of the jobs. For each j E J, i E I, let y,,j be the relative amount of demand

i, assigned to server j, i.e., y E R". The variable y is constrained so that 0 < yj, for each j E J, i E I.

Further, the variable y must meet the demand for each i. That is, for all i E I,

Eyij2 =1

jEJ

Let positive linear cost coefficients, cj, and positive minimum cost constants, Oj, be associated with each

server j and job i. That is, assume for all i E I and j E J, that cj > 0 and Oj > 0. To simplify notation,

interpret the vector y.,j to be the elements of y E R",mn associated with server j. The cost function for each

server j is:
max(Oj, (c.,j,y.,j)) if any yj > 0,
0 if yj = 0, Vi E .

This server cost function represents a flat minimum charge with linear rates beyond the minimum. Some

restaurants, for example, charge a flat table charge, even if the sum of the menu items fall beneath this price.

Figure 1 shows the graph of an example server cost function.

f(Y)

0 y 1

Figure 1. Example Server Cost Function
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One can form the strong relaxations of the cost functions by introducing variables, I > w> 0, for

E e J, and adding the constraints that

I > wj >_ yj, Vi,j.

The relaxed primal problem for the assignment problem is then

inf f3 (wjy,,) (2.1I.1)
w'Y

3

subject to: Vi El = 1,
p- J

where f3 (wj,y.,j) := max(wj0j, (c.,j,y.j)) + 8(wj,y.,j 10 < yi~j < wj < 1,Vi E I). Here, 6 is the indicator

function; that is,

{J" 0 if the condition is satisfied,
+oo if the condition is not satisfied.

Notice that fj is convex, being the pointwise maximum of a constant function and a linear function. By

adding a variable z E W, the problem can be expressed in standard form with mn + 2n variables and

2mn + m + 3n constraints as follows:

(P)" min zj
3

subject to:

w3 -y, 3 _>0, Vij

-0jw 3 + zj _ 0, Vj
(2.1.2)

-cj yj + zj _0, Vi

w< l, Vj

yi,j 2>0, Vi, .

The relaxed primal problem (P) is feasible, and the optimal value is finite, since the cost coefficients are all

positive and the equality constraint on y assures a closed bounded feasible region for the y variable. Thus,

by the Duality Theorem of Linear Programming, there exists solutions to the dual of the relaxed problem.

See, for example, Kolman and Beck[1980l.
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2.2 Dual of the Relaxed Problem

Define dual variables, v E R,• r, s,t E R', and u E Rm, so that the dual, directly derivable from (P) is

(D): max Eu,-Et_

subject to:

V2,, - (!jS, = 0, Vj

-vi'J + us - cir, <_ 0, Vi, j

s 3 +r. = 1, Vi (2.2.1)

vi >Ž0, Vi,j

tj _>0, Vj

sj >0, Vj

rj >0, V

u, unconstrained, Vi.

By substituting

=j (ij 10) /P Ž0,

since vj 2! 0, and Oj > 0; and substituting, rj = 1 - sj > 0, one can eliminate the variables r and s to

obtain:
(D): max Eut -Etj

i 2

subject to:

E Vij <0j, Vi (2.2.2)

tj> , Vj

v1,3 Ž0, Vi,j

uN unconstrained, Vi.

The dual has mn + m + n variables and 2mn + 2n constraints. Solving the dual problem may be preferable,

if there are fewer variables and constraints. Then, after solving the dual, one must retrieve a solution.
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2.3 Solving for the Primal from the Relaxed Dual

Since (P) and (D) are linear programming duals of each other, and if u, z, t ( and implicitly r and s) solve

(D), then there exists w, y, z which solve (P). The optimality conditions which must be satisfied can be

expressed, for optimal u, v, t and

j (Vi 3 ) /03i,

rj -1 sj.

Then, from (P), it follows:

wj-Yj_>0, Vi, j

-Ojwj + zj > 0, Vi

- C y, 3  + zj 0o, Vj

3•-•yzj = 1, Vi

wj 1, Vj

yij >0 i, j.

Further, by complementarity conditions for (P) and (D), the following must be satisfied:

Vij (wj - yi,j) = 0, Vi,j

s,(-Ojwj + z3 ) = 0, V3

r .(- CJ YIJ + Zi) = 0, Vi

tj(wj - ) = 0, Vi

y1 ,j(-vij + ui - c4,jrj) = 0, Vi,j.

Using the above conditions, one can express the solution for w, y, z as a solution to a system of linear

inequalities with resliect to the following index sets:

J= :{Jjj'9 E (0, l)} ý:= wj Oj = -, Ecy,,j = zj

CijY' WkZ~jy:,,=ZjJŽ>:= {j]jr,=1} • c~yr==j>.:c

Y5 ={l -j =0u 4=. c,,j3 r,3  w. <j = zj

1" ::{il vJ > 0} 4=* y,, = Wj=

15



Solve the following system for w, y, and z: (Note that z is an unnecessary variable.)

0= , Vi E IJj,Vj

yij _0, Vi,j

y ,j 1, Vi

wj < 1, Vj

yi.* Zwv, vi, j (2.3.1)

tj(wj - 1) 0, Vj

Z cjy:,,j j = wj, Vj E J=

Z c4jyj = zj wjoj, Vj E g>

Scjjy•,j <wjej = zj, Vj E X5-.

2.4 Sample Problem

In order to illustrate the primal and dual relationship, the following simple problem is shown. Let m 4,

n = 3; let 0 = (26,30,30); let

c 20 25 25)
40 40 44

30 3 22/

The optimal value is 87a, achieved at, for example, t = (1,0, 1) and w = (1,0, 1) and:20) (0o o 0 ( 1 0o 0
u=, = 0 0 , = 41 0 '

0 01144 44 1
(223) 00 2-2) 0W sho t1f h

s 1 = s 2 = 0, and s 3 = 1 . Thus, r- r2 = 1, and r 3 = 1- We show that this solution satisfies the

optimality conditions (2.3.1).

First, consider j = 2, where yi,2 = 0 for all i, satisfying I1 = {1,4}, and 12 = 0. Further, w2 = 0 is

consistent, since J>- = {1, 2} and

(C.,2, Y.,2) = 0 > w20 2 = 0 * 30 - 0.

10 (,l n = {} tm s

Second, consider j = 3. 10 = {1} and 131 {2,4}. It must be that r 3 = -E (0,1) and {3. It must

be that y4,3 = 1, which implies that w3 = I = Y2,3. To satisfy,

(c,. 3 , Y*,3) = W303 = 30,
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3
then Y3,3 = 4.

Lastly, consider j = 1, where I' = {2,4} and 11 0. Since 1 E J-, then

(c.,1,y y.4 1 573 > w101 = 26.

1 , = = YI"Y = _ < W 1 .

For i 3, E-j y,j = 1. Further, for all i, Ej yi,j = 1.

The full set of solutions of this problem include: yj- 0, except as follows:

3
Y 1 - w 1 =1. Y2,3 = Y4 ,3 = w3 =, Y3,3=

44.
and W2, Y3,2, and Y3,1 satisfy:

W2 1,

6
Y3,1 >2!

41
Y3,2 - Y3,1,

44
4

0 < Y3,2 <_ W2 Y 5Y3,2

See Figure 2, Example Solution Set in 2 DimensiorLn, w2 and Y3,1.

1
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2.5 Methods to Solve Assignment Problem

The attractiveness of the strong relaxation of the facility location problem is seen in experimental results.

For example, Cornudjols et al. f19891 define the convex hull of the uncapacitated facility problem solutions as

the "uncapacitated facility plytope". They point out that often there is a {0, 1} solution within the relaxed

solution set; and if not, a solution can be found after a small number of cutting plane iterations. Their

experimental results show a small difference in the objective function values between the two problems, the

relaxed and {0, 1 } problem. Thus, most methods to solve this problem use linear programming relaxations,

although there are great variations on how to solve these subproblems. Traditional, primal simplex and

cutting plane methods are used. Conn and Cornudjols [19901, for their problem, solve the dual of the relaxed

primal using projections. If solving the dual is more efficient, one advantage of this may be that a (perhaps,

incomplete) set of primal solutions are characterized through the comp!2mentary slackness conditions of each

dual solution. It is desirable to find an efficient method to search the set of primal solutions generated from

a given dual solution.

The primal solution set generated by a given dual solution is a polyhedral convex set being the solution

of (2.3.1). The conditions on w assure that w is bounded. The condition on the y variable, yj - 1, for

all i, and that yj 2! 0, for all ij assure that y is bounded. So the solution set of the relaxed problem is

also a polytope. Searching for {0, 1} solutions among the vertices of this polytope, via direct search, could

require 2' iterations, where at each iteration, a solution in the variable y must be computed or found not to

exist.

The approach proposed in this dissertation is to apply a penalty-type method, adding equations to the

system, which can be solved using continuous methods. As an example of a penalty for {0, 1 } conditions

on w, one may choose to add the condition, wj (1 - wj) = 0, for all j. This non-linear condition has the

property that, if met, guarantees a {0, 1 } solution in wj. However, the non-linear property demands more

powerful solution methods.

One can express the system of equalities and inequalities in (2.3. 1), adding the condition, wj (1 - wj) = 0

in more convenient notation. Use a single variable x to represent the variable (w, y), noting that z is an

auxiliary variable determined by the variable (w, y). Define the function F to represent the nonlinear coercive

function of w. For example, Fj : R '-4 R, and Fj(wj) := w3 (1 - w,,). Let the matrix A and the vector b

represent the linear transformations in the inequalities, and the matrix C and the vector d represent the

linear transformations in the equalities. Then, solve the system below, finding x which satisifies:

F(x) = 0,
Ax < b, (2.5.1)

Cx = d.

This system has linear inequalities and nonlinear and linear equalities. In the introduction, tIan's method to

solve systems of linear inequalities in a least square sense was described. One approach to solve (2.5.1) is to
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extend Han's method to include non-linear equations. Burke [19841 describes one algorithm to solve the linear

inequalities with non-linear equations in a least square sense The search direction is derived by projecting

(least norm least square) the negative of the residuals onto the space spanned by the coefficients of unmet

inequality constraints. Hle uses an Armijo line search to gain global convergence. The least square least norm

projectioi, uses a singular value decomposition to find a search direction. We will show that common search

direction methods are applicable, such as Gauss-Newton, and quasi-Newton methods. These methods, using

direct inverses or projections using QR decomposition with column pivoting, are finite processes for finding

a search dicection and can be more efficient in computation. Further, the other major global convergence

technique, the trust region method, is examined, considering various model functions.

It is not advisable to use a penalty function having a large penalty parameter or a barrier function to

coerce a solution. Large penalty parameters are known to give ill-condition-d subproblems and are compu-

tationally impractical, especially for this problem, since solutions will necessarily occur at the boundary of

the feasible set.

Using Newton's method to directly solve the system of equations:

F(x) = 0, to

(Ax - b)ý = 0, (2.5.2)

Cx = d.

is difficult due to the non-differentiability property of (Ax-b)+. Advances in non-differentiable optimization

have yielded new methods; but, to-date, these "bundle" methods have suffered f-om poor stability and rates

of convergence. See Lemarechal[19861. Recent developments, Schramm and Zowe[19911, use trust-region

features to increase the bundle method performance. However, the special structure of this problem suggests

again that more efficient methods can be found.
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3 Properties of the Least Square Formulation for Solving a System of Linear Inequalities

From the discussion at the end of section 2.5, a more promising approach to solve (2.5.1) is a least square

approach using a small penalty parameter, such as 1. This approach has two strong properties. First.

the objective function is differentiable. Secondly, we show in this section that the least ouares problem

with small penalty parameter is numerically stable under small perturbation due to inaccurate computation.

Fiv'ther, there are many choices of algorithms available for minimization of differentiable functions, several

of which will be analyzed and adapted for use in this problem. The system is solved by minimizing the norm

of the residuals of the inequalities and equalities.

In section 3.1, we define the least square formulation for solving a system of nonlinear equations and

linear equalities and in section 3.2 develop numerical stability properties of the least square objective function.

In section 3.3, a special neighborhood of a designated point, called an identification neighborhood is defined

in relation to a finite system of weak linear inequalities. Points in an identification neighborhood of the

designated point satisfy the same strict linear inequalities as does the designated point, with the exception

of those weak linear inequalities which the designated point satisfies with equality. This means that the

points in an identification neighborhood are on the same side of all separating hyperplanes (determined by

the weak linear inequalities) as the designated point except for those hyperplanes on which the designated

point lies. Further, in section 3.3. generalized differential constructs, first order and second order, are defined

for the system of inequalities and the least square objective fmr L1011 Properties of Taylor series expansion

based on generalized differential constructs to I- aflI approximate the least square objective function are

analyzed.

3.1 Statement of Least Square Problem

We wish to find x E R' which solves the following system of linear inequalities and equalities and non-linear

equalities:
F, (x) = 0,

(3.1.1)

Ax < b,

where
F1 : R' mW and Fi is non-linear,

A : R" R,2 and A is linear.

This is a mixed system of linear inequalities and equalities and non-linear equalities. Notice that the linear

equation, and the non-linear equations are combined into a single multivariate function, Fl. Theoretically,

these are treated together; but one should exploit the simple linear equations properties in computational

algorithms. One can transform this problem iuto a least squares minimization problem. Denote aT to be

the tth row of A4 and a2, to be the jth element of the ith row of A. Recall that (Ax - b)+ represents the

projection of Ar - b onto -R2. We define F .Rn ?m,-1-.-,2

F(X): ( Fi(x) (x)

(Ax-b).) = F2 (x))

20



Let f : N' - R be defined:
f(x) f,(x) + f2(x), where

fI(x) I (Fi(x), FI(x)),
2

f 2 (x) :I -((Ax - b)+, (Ax - b)
2

Then, instead of solving (3.1.1), find x which solves

inf f(x). (3.1.2)

Although the two problems, (3.1.1) and (3.1.2), are not equivalent, notice that if x. solves inf f(x) in (3.1.2),

then x. solves (3.1.1) If inf f(x) > 0 in (3.1.2), then (3.1.1) has no solution. The least square algorithms do

not guarantee that a global infimum is returned to solve (3.1.2). They provide a local minimum stationary

point x. of (3.1.2) which may or may not be a solution for (3.1.2). For example, if f is not convex, there

may be non-global, local minima. f given by (2.5.1) is -" convex. Even though the algorithm may return

a local minimum stationary point, we show in section 7 that a local minimum solution of (3.1.2) provides

important information for solving the assignment problem.

3.2 Stability of the Least Square Problem for Solving Systems of Linear Inequalities

One aspect of numerical stability that is related to solving optimization problems is the sensitivity of the

solution to the problem due to small perturbations or inaccuracies of computation. One, intuitively, would

characterize numerically stable problems as ones which, given small inaccuracies in computation, would give

smal! inaccuracies in the solution. Certain problem formulations are known to be numerically unstable,

such as penalty functions having large penalty parameters and barrier functions, which have solutions on

the boundary of the feasible set. In this section, we show that the formulation of the least square problem

for solving systems of inequalities is numerically stable to small inaccuracies in computation. See Robinson

[1975,1976] where he develops stability theory for systems of inequalities, both the linear and non-linear case.

Consider the linear transformation A in (3.1.1) where A : R' -. R,•2, a right hand side b E R,2, and

the variable x E RW1. The system of linear inequalities is:

Ax < b. (3.2.1)

Define f0 := {xjAx <-b} as the solution set of (3.2.1), where Q may be empty. We say that (3.2.1) is solvable

if Q is nonempty. Robinson defines the nonempty solution set 0 as stable if for each x0 E 0 there are some

positive constants 03 and 6, such that for any linear transformation A' : Wm * W, and b' E Wm, where

[[A - A'[[ + [[b -b'1[ < 6, the distance from x0 to the soldtion set of the perturbed system, &2' := {x[A'x < b'}

satisfies

dist (xo, Q') ! 13p(xo), (3.2.2)

where

p(x) := inf lib' - A'x - k~l. (3.2.3)
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Notice the p(x) = ]](A'x - b'),11. It is not sufficient for the system (3.2.1) to be solvable to guarantee Q

is stable. We define dist (xo, fl') to be infinite, if 0' is empty. A simple example of an unstable solvable

system, in a one-dimensional variable x, is:
x <0.

x >0.

For this system, Ql = {0}. Yet, for any 6 > 0, the perturbed sytem,

6

-2'

has empty solution set, meaning that the solution set is unstable.

Robinson defines the system (3.2.1) to be regular if there exists some x such that Ax < b. This is a

strict consistency condition. Robinson shows that a system (3.2.1) is regular if and only if the solution set

0 is stable.

Rather than formulating the problem as in (3.2.1), one can represent the problem as a least square

formulation by finding x E R'J and z E R,,2 which solve: -

inf -(z,z))
x,z 2 (3.2.4)

subject to: Ax - b < z.

Recalling the KKT conditions for this problem,

ATz = 0,

(3.2.5)
Ax - b - z < 0,

(z,Ax-b-z) =0.

The system of inequalities represented in (3.2.5) include:

-Z < 0,
(3.2.6)

Ax - b - z <0.

By extending the original problem (3.2.1) to (3.2.4), a least square formulation, the system of linear inequal-

ities (3.2.6) is regular, and hence the solution set is stable. This is assured even if the original system (3.2.1)

is not solvable, since (3.2.6) satisfies a strict consistency condition for any choice of A and b.
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3.3 Approximating Properties of Taylor Series Using Generalized Differential Constructs

Assume that f, is twice continuously differentiable, which is the case for the subproblem (2.5.1) obtained

in the assignment problem. Denote H,(x) := V2 fi(x) to be the Hessian of f1 , and denote J, (x) :J= JFI (x)

to be the Jacobian of F, (x). Refer to the differential notation that was outlined in Table I in section 1.3. This

table clarifies the distinction in notation between generalized and single-valued differentials, and between

differential constructs for f and F.

Proposition 3.3.1.

(Ax - b)+ is uniformly Lipschitz of rank llAll of order I on all of R. That is, for all x, y, I(Ax - b)- -

(Ay - b)+1 1 [hAil lix - yll.

Proof. For all i,

0 if ((ai,x) - bi)+ = ((ai,y) - bi) + = 0,
I(ai,x-y)l if both (a,1), x i(a,,) <61 and (ay bi , (3.3.1)

= I(a, A(x - y))I some A E (0, 1) , if (ai, x) < bi and (a,,y) > bi,
I(aj, A(x - y))I some A E (0, 1), if (aj, x) > bi and (ai, y) < bi.

The first two cases are clear. The third case, where (ai, x) < b, and (a,, y) > bi, means there exists A E (0, 1),

such that z = y + A(x - y) and (a,, z) = bi. Then

((ai, x) -bi)+ - ((ajy) - b )+f =

I(aj, z) - bi - ((ai, y) - bi)I =

I(a,, z - y) = I(a,,A(x - y)l.

The fourth case is shown similarly. 1

Thus the Clarke generalized Jacobian set of (Ax - b)+, denoted 09(Ax - b)+, is well-defined. Let Q be

the set of points where the Jacobian of (Ax - b)+ does not exist and denote J 2(yj) to be the Jacobian of

(Ayk - b)+, where the Jacoblan does exist. Then 49(Ax - b)÷ is the set of all m x n matrices J 2 (x), where

any J 2(x) is a convex combination of a finite number of limits, Jk, k = 1, ... , K, some K. Each limit J• is

obtained as the limit of a sequence of the form J 2 (yj), where yL -- x and yj Q 1l. That is,

J2 := lim J 2 (y1 ), where yj ý Q.

Proposition 3.3.2."

J 2 (x) is a generalized Jacobian of (Ax - b)+ if and only if

0 if (a,,x) - bi < 0,
J 2 (ij) al if (a1 , x) - b, > 0, (3.3.2)

Aja- if (ai, x) - b= = 0, for some A1 E [0, l1

Proof. For this function (Ax - b)+, Q = {xl (a, x) = b,, for some i}. By direct calculation of limits. J.,

one finds:

J• = EkA = lim J 2 (y1 ), where YL 0 Q,
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where Ek is an m2 x m2 diagonal matrix, with elements e, on the diagonal, where

0 if i E I-(x),
e 1 if i E I (x),{Oor I ifiE I0 (x).

Then J 2 (x) E a(Ax - b) means

K K

J2 (x) = ZAkEkA, such that, Z Ak = 1,Ak E [0, 1].
k=1 k=1

Therefore, one can express J 2 (x) = DA where D is a diagonal m2 x m2 matrix, with elements d, on the

diagonal, where
(0 if i E I-(x),

di = 1 if i E I'(x),
kA, if i E 10(x), where Ai E [0, 1].

Note that for all x.p E •", that IIJ2(x)pll •_ IhAII [1plI, for all possible choices of J2 (x) E 9(Ax - b)-.

Commonly, Jl(x) is assumed to be Lipschitz continuous of rank -Y on some open convex set D. That is

IIJ,(x) - Jd(y)II < "yllx - yll for all x,y E D. The following proposition follows from real analysis and is

found in most elementary material on continuous optimization, including Dennis and Schnabel[1983

Proposition 3.3.3.

If J, is order 1 Lipschitz continuous of rank -y on an open set D, then

11Fl(x + p) - F1 (x) - J1 (x)pl[ < 21lp[ll,

where x and x + p E D.

Proof. Since J1 is Lipschitz continuous, it is differentiable a.e. on D, and the line integral parameterized

along x to x + p satisfies:

IIF,(x + p) - F1 (x) - Ji(x)phl < ] lJI(x + tp) - Jj(x)[[jj 1pl dt

= Lylltplj tpl dt

= Y11P112  t dt

^fhjp112.

Observe that J 2 (x), a generalized Jacobian of (Ax - b)+, need not satisfy a Lipschitz condition.

Proposition 3.3.4. Existence of an Identification Neighborhood.

Let x. be given and let
P°(x.) := {ij (a,, x.) = bi},

I+ (x.) : il (a,2x.) > b4,

I -(x.) :={ilJ (aj, x.) < bi}
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Then there exists a neighborhood N(x., r) of x,, such that for x E N(x., r):

lo(x) c1(X.),

l*(x) = +(z\i0(,),(3.3.3)

Proof. Removing the constraints, i E f0 (x.). allows forming a neighborhood, since there are then all strict

inequalities. Define hyperplanes for i, Hi := {xI (ai, x) - b = 0}, and let r > 0 be chosen so that.

r < min{ dist (x. .Hf)Ii E I'(x.)U I-(x.)}.

If x E N(x., r), then
I°(x) C l°(-.),

I+(X,) I l(x)\I°(x,),

-(x,) I-(x)\lO(x.).

II

Proposition 3.3.5. Perfect Approximating Property

Let x. be given and let N(x., r) be a neighborhood which satisfies (3.3.3) in Proposition 3.3.4. Let

x E N(x., r) and let p := x. - x, then

1. for any J2 (x) E &(Ax - b)+,

(A(x + p) - b)+ - (Ax - b)+ - J2 (x)p = 0;

2. for any J 2 (x.) E O(Ax. - b)+,

II(Ax - b)+ - (Ax. - b)+ - J2(x.)(-p)ll < IIA;0(..)l Ilpil;

3. for each particular x E N(x., r), there is at least one J 2 (x.) E a(Ax. - b)+, such that

(Ax - b)+ - (Ax. - b)+ - J2(x.)(-p) = 0.

Proof. For 1, note that x + p = x.. Consider any i:

1.1. If i 0 1°(x.). This implies i 0 1°(x). If i E I-(x) U l+(x), then (J 2 (x))j is unique. In either case, then

((x + p, a,) - b,)+ -((x, a,) - bi)+ - (J2 ix))hp = 0.

1.2. If i E 10(x.). If i lI-(x) U I+(x), then (J 2 (x))i is unique. If i E I(x), then (p, a,) 0 0, so for any

(J2(x)), = )aj, where A E [0, 1], (p, Aah) 0 0. In any case, then

((x + p, a1 ) - b1 ) - ((x, a1 ) - b,)+ - (J2 (x)))p = 0.
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Relation (2) says that all the error of the first order approximation is in the components of the indices

i E 1°(x.), for this neighborhood.

For 3, Let x E N(x., r), and let
1I÷ : I(x) n l0(x.),

I- V=I (x) n l°(x,).

The only choices are for those i E 10(x,). Choose

a2  for i E I+,
(J2(x,))X 0 for i E V,

Aa1  for any A E [0, 11, i E 10(x.) n 10(x).

Then J 2 (x.) E 9(Ax. -b), and

(Ax - b)+ - (A(x,) - b)+ - J 2(x.)(-p) = 0.

II

From Proposition 3.3.5, one can guarantee a type of perfect first order local approximation. For any x

in this Proposition 3.3.4 neighborhood of x,, any generalized Jacobian selection of a(Ax - b)., can be used

in the first order Taylor series to perfectly first order model (Ax' - b)+ from the point x. On the other

hand, the reverse may not hold. There may not be any generalized Jacobian selection of &(Ax, - b)+ for

which the Taylor series based on this generalized Jacobian perfectly first order models (Ax - b)+, for all x

from this point x,. But for each x, there is at least one generalized Jacobian in a(Ax, - b)+, for which the

Taylor series using this generalized Jacobian models (Ax - b)+ perfectly. The local approximating property

of Proposition 3.3.5., the first result, is the critical property to derive properties of local convergence to a

statiunary point, such as local convergence rates.

This neighborhood is called the identification neighborhood of a point x,. In this neighborhood, a

point x has the same strict inequalities as for x,, with the exception of the indices for i E I°(x,), where

a containment property holds, 1°(x) C I(x.). Other research has addressed this neigborhood. Han[19801,

Burke[19831, and Burke and Mor6[1988] use this property in analyzing algorithms to solve systems of linear

inequalities. They state an equivalent form of the property for the linear case, stating that the directions

stay in the null space of the space spanned by the coefficients of the active constraints of the stationary

point x,. They did not develop this property in the setting of generalized differential constructs. In section

5, we address the class of C 2 convex functions and develop the local approximation results for this class of

functions, applying the approximation result in a unified way for common algorithms. Robinson[1990 refers

to the approximating property (3.3.5) as a point-based linearization approximating property, from which he

develops local convergence properties of a Newton-like method to solve for zeroes of nonsmooth functions.

Robinson does not show the details of how to form the point-based approximation for specific functions,

rather he applies this approximating property to analyze general convergence properties.

Denote any generalized Jacobian of F at x, denoted J(x), to be

J(X) J(x)J2 x) where J 2 (x) E8(Ax-b)+.
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f2, being a differentiable convex function, is continuously differentiable.

Proposition 3.3.6.

Vf2 is Lipschitz continuous of rank JJAI12 of order I over all R.

Proof. For all x, y,

IIVf 2 (x) - Vf 2 (y)Ijj 1 A T (Ax - b) - AT (Ay - b)+11

SJA 111 1(Ax - )- (Ay - b).,iI

<_ hIAIl 2 ix - yvii

where the last inequality comes from Proposition 3.3.1. n

Therefore, one can also derive a Clarke generalized Jacobian set of Vf 2 , or a generalized Hessian set.

denoted aVf 2 (x). Let 0 be the set of points at which Vf 2 (x) is not differentiable. Then 0Vf 2 (x) is the

set all n x n matrices, H 2(x), where H 2(x) is a convex combination of a finite number of limits, H , where

k = I ...... K, some K. Each limit HII is obtained as the limit of a sequence of the form V2f2 (y1 ) for some

sequence yj -- x where Yj ý Q. That is,

H r := lim V 2f 2 (yl) where yj ý Q.

Lemma 1.

If x. is given, then there exists a neigborhood N(x., r) of x., such that for x E N(x., r) and any

J 2 (x) E c9(Ax -b)+ and J 2 (x.) E a(Ax. -b)+,

(J 2 (x) - J2(x.))T(Ax. - b)+ = 0.

Proof. Let I+(x.) {ij (aj,x.) - bi > 0}. If [+(x.) = 0, then the result follows, so consider I÷(x.) $ 0.

Let Hi := {xl (ai, bi) - = 0} be the hyperplane defined by a1 , b1 . Let r > 0 be chosen so that,

r < min{f dist (x., Hj) Ii E 1+ (x.)}.

If x E N(x., r), then

It+(x.) C I'(x) = {iJ a, x) - b, > 0},

and for indices i E I+ (x.), ((ai, x) -b1 )+ is differentiable and

9((a 1,x) - bi)+ = a1 .

Then

(j 2 (x) - J2 (x.)T(Ax. - b)+ (a1 - a1)(Ax. - b)j = 0,
sE/ + (X.)

since for i 0 I(x.), ((a 1,x.) - bj)+ = 0. 11

Lemma I gives a neighborhood which is a superset of the identification neighborhood about x., since

only the indices in V (x,) are used to define the neighborhood. This lemma is used in the proof of Theorem

I in Section 4.
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Proposition 3.3.7.

OVf 2 (x) = {r2i (x)J 2 (x) I J2(x) E 9(Ax -blt

Proof. Using the definition of the generalized Hessian, one can compute Hk obtained as tie limit of a

sequence of the form V 2f 2 (yI), where yj -- x and yj 0 Q giving:

Hk := lim V2f 2 (yl) where yj 0 0
!dL -X

= rm ,(j(T(yj))(Ayl - b), + JT(yj)J 2 (yj) where YL ý Q
lim J2j(yL)J2(yL) where yj 0 ,

since, for i e I(x) U I-(x), lim 1 ,_.((aj,yj) - b)+ = 0, and for i E 1+(x), (J 2 (x)), (j 2 (x)), = a2. a

constant, which implies

lim J(J 2 r(yL))(AyL - b), = 0.

Therefore, a limit Hk is expressed: Hk = (EkA)TEkA, for some Ek, which is an m2 x m2 diagonal matrix

with elements e, on the diagonal, and

• • 0 if i E I-(x),
e = 1 if i E I+(x), (3.3.4)

0 or I if iE 1°(x).

Note that E2 = Ek,. Then

(Ek A)T EkA = (Ek2 A)T A = (EkA)T A.

First show that aVf 2 (x) C {Jf2(x)J 2(x)fJ 2 (x) E 8(Ax-b)+}. For A,, satisfying = A, = 1 and A, E fO, If,

then H2 (x) E aVf 2 (x) means:

K

H 2 (x) = I AkHk
k=1

K

= EA\k(E, A)TEkA
k=l

K

= (EA\kE,,A)TA
k=l

K K

= ((��kEk)4( A )ET) AA

k=l k=l

K K
= (•'•AkEk)½A)T(j-- Ak Ek) A,

k=l k=l

since
K K K

k=l k=l k=1

because Ak E 10, 11, and E, is diagonal with the property (3.3.4). Since - A,, = 1 and A, E 10, 11, then

K

(EA, Ek)½ A E a(Ax - b)+.
k=l
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K
Now, to show containment in the other direction, express J 2 (x) E= I AkEk)½A, solving for Ek which

are diagonal and satisfy (3.3.4) and Ak satisfying -k= Ak = I and Ak E 10, 11. This is easily solved for

indices i E I+(x)U -(x), since then (J 2 (x))i is unique (and ek is unique) and any choice of Ak E [0, 11 where

]k=1 A, = 1 works. For i E [°(x), one must solve simultaneously for some finite K, and< =0or 1, and
k E 10,I1I where E Kl1 Ak 1"

K
(J2(X))i = ((E AkEk)½A)j" (3.3.5)

k=1

Since for Ak E 10, 11 where k=1 Ak = I implies ((I•K AkEk)½), E [0, 11, and since the positive square root

function is a bijection on [0, 11, then this system is underdetermined, implying (3.3.5) is solvable. Thus, one

would reverse the arguments in the other direction, given any generalized Jacobian J2(x) E a(Ax-b) - then

some H 2(x) E OVf 2 (x) exists st i that H 2(x) = J2J(x)J2(x). 11

Proposition 3.3.7 gives one convenient way to choose a generalized Hessian of f 2(x) using any selection

of J 2 (x) E a(Ax - b)4. Note that J2"(x)J 2 (x) is symmetric, positive semi-definite. Also, for any x,p E Ti'

and any choice of J2(x) E a(Ax - b)+, it follows that J(p, J2(x)J2 (x)p)I -I IAI[ 2 1[pIlI.

Proposition 3.3.8.

Let x. be given and let N(x., r) be a Proposition 3.3.4 identification neighborhood. Let x E N(x., r)

and let p := x. - x. Then

1. for any J2 (x) E a(Ax - b)

f2(X +p) - f 2(x) - (p, Vf2(x)) - I(p, JT(x)J 2(x)p) = 0;2

2. for any J 2 (x.) E a(Ax. - b)+,

IA2(x) - f2 (x) - ((-p), Vf 2 (x.)) - (P, JT(x*)J2 (x.)p)l _I(Ajo.(.)p, (Ao,.(.) + 2At+(x.))p)I;
22

3. for each particular x E N(x,,r) there is at least one J2(x.) E a(Ax. - b) +, such that

f2(X) - 2(X) - ((-p),Vf2 (x.)) - I (p, J2T(x.)J 2 (x-)p) = 0.

Proof. For 1, Proposition 3.3.5 means that F2 (x + p) = F2 (x) + J2 (x)p. Therefore, taking inner

products:
(F2 (x + p), F2(x +p)) = (F2 (x) + J2(x)p, F2 (x) + J2(A)p),

f2(X + p) = f2( ) + (J 2 (x)p, F2 (x)) + I(p, J2 (x)J 2 (x)p).

For 2. this follows from the property that all the error is in the components having indices i E 10(x.) and is

all contained in the term: ½(p, J2'(x.)J 2 (x,)p).

! (pJf(X.)J2(X.)p) 
=2

2~ ((10~p lo(X.)p) + A(Ar+(.)p, AI±(..)p) + 2 0(J.o)p, Ax+(x.)p))-
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Therefore, since for i E I°(x.), (J2 (x,)), =)ai, for some A2 E 0, 11, then
I(~ ~I~\\ 11 o- •(, )2(x,)p)l !_ -1ýAI (..)p,(A,,(..) + 2Aix.(.))p)l"

1f2 (x) - f2 (X.) - \(-p), VJf2 (X,)) - 2 (V, 2 2

For 3, choose J 2 (x.) as in Proposition 3.3.5. Then the result follows, just like in the first result of this

proposition. 11

Denote Fr(x) to be the Hessian matrix of (Fl(x)),, and denote g(x) as the gradient of f(x). Denote

g1 (x), g2(x) = AT(Ax - b) -, the gradients of fI(x) and f 2 (x). respectively. A choice H(x) E 3Vf(x), a
generalized Hessian of f(x), is determined by the choice of generalized Jacobian of (Ax - b)-. Then

g(x) = J(X)TF(x) = JTFI (x) + AT(Ax - b)= g1(x) + g2(x),

H(x) = J(X)Tj(x) + Q(x) = J (X)TJ!(X) + j 2 (x)TjJ2 (x) + Q(x), (3.3.6)ml(336

where Q(x) := • (F,(x))iF1 (x).
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4 Generalization of Algorithms for Solving a System of Linear Inequalities

In this section, we develop algorithms to solve problem (3.1.2). The specific algorithms are adaptations of the

Gauss-Newton and Levenberg Marquardt methods, based on using a selection of the generalized Jacobian at

each iterate. In section 4.1, the Gauss-Newton like algorithm is defined and local convergence properties are

analyzed, and the conditions for local q-quadratic convergence are verified. The Levenberg-Marquardt type

algorithm is developed and the conditions for local convergence are stated. In section 4.2. global convergence

methods are discussed. The Armijo line search algorithm is analyzed. The global trust region method is

adapted to solve (3.1.2) using a generalized Hessian model function, and the conditions for convergence are

verified.

4.1 Local Convergence Results

The properties of the algorithm along with the properties of the specific function being minimized guarantee

local convergence in some neighborhood of the solution or stationary point. We show local convergence

properties for the undamped search directions, the solutions d to Bd = -g(x), where g(x) = Vf(x) and B

is the matrix determined by the specific algorithm. See section 1.5.

4.1.1. Adaptation of Gauss-Newton Directions: Iterates xk are generated by

Xk-i = Xk + dk

where dk, the search direction, solves

k JkAdk = -g(xk) k- JFk,

where Jk is a generalized Jacobian of F at Xk. Local convergence of the Gauss-Newton method in some

neighborhood of the solution to (3.1.2) is assured under the conditions of Theorem 1. Compare to Theorem

10.2.1 of Dennis and Schnabel 119831 for the smooth case.

Theorem 1. Local Convergence of Gauss-Newton for Linear Inequalities

Let f and F be defined as in section 3.1, and assume the following:

1. f, (x) is continuously differentiable in an open subset, D C R' and J1 (x) is Lipschitz continuous on D

of rank -y and order 1.

2. There exists x. E D, such that g(x.) = 0.

Assume there exists a neighborhood N(x., r) C D, such that the following are satisfied:

3. IIJ,(x)II < a, for all x E N(x., r).

4. There exists a > 0, such that for all x E N(x., r),

1(j,"(x) - j, (x.))TFi(x.)Il <_ 0,ox - x.l. (4.1.1.1)
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5. A, the smallest eigenvalue Of jT(X, )J(x), for any choice of generalized Jacobian, satisfies:

A > a.

Then. for any c E (1, •), there exists 6 > 0, such that for all xo E N(x., (), the Gauss-Newton iterates

Xk+I :_ xk - (J(xk)T J(xk))-lJ(xk)T F(xk),

are well-defined and converge to x. and satisfy:

co" ly•IIXkk I - _ + cay - - x.11, (4.1.1.2)

A~
1

-~
1  

2A

IlXk+I -X 1 • 2'A IIXk-X.11< Il& - XII. (4.1.1.3)

Proof. There are two conditions different from those of Dennis and Schnabel. J2(x) may not be Lipschitz

continuous on D, and J4T(x)J 2 (x) may not be unique. Lemma 1 and Proposition 3.3.5 show that there exists

a neigborhood N(x.,r.) of x., such that for x E N(x.,r.) and for any choice of generalized Jacobian of

F2 (),

(J 2 (X) - J2 (x,))T (Ax. - b)+ = 0,

F2 (x,) - F2 (x) - J 2 (x)(x, - x) = 0.

This implies that J2f(x)(F 2(x.) - F2 (x) - J 2 (x)(x. -x)) = 0. Choose r := min(r,r.).

For the proof of the theorem, choose some fixed c E (1, •). By an argument similar to Proposition 1.3.1,

since JT(x. )J(x.) is invertible for any choice of generalized Jacobian, there is a neighborhood of invertibility,

such that for any x E N(x., E 1) and for any choice of generalized Jacobian,

Ii(JT(X)J(X))-Y1I A'C

since c > 1. Let

f:=min r, c , ca

Choose xo E N(x., F) and then

ji(JTtXo)J(xo))--iI _< C. (4.1.1.4)

Using induction, consider the case for k = 0. Then at the first step, x, is well defined and

X - x. = Xo- -_ (jT(x)J(xo))- I JT (x)F(xo)

= (JT(xo)j(xo))-I[jT(xo )F(xo) + jT(xo)J(xo)(x. -Xo)I

= (JT(xo)J(xo))-l[JT(xo)F(x,) - JT(xo)(F(x.) - F(xo) - J(xo)(x. - xo))] (4.1.1.5)
= j (JX0o)J(3xo))- I[JT(xo)F(x,) - JT(xo)(F (zx) - F (xo) - J, (xo)(x. - x0))

+ JT(xo)(F 2 (x.) - F2(xo) - J 2(xo)(x. - xo))].
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By Proposition 3.3.3, given the Lipschitz condition on J,

IF, (x.) - F, (xo) - J1 (xo)(x. - x,)j1 <-- - x. 1'. (4.1.1.6)
2

Since J"T(x.)F(x.) -0, and by Lemma 1. Proposition 3.3.5, and condition 4, then

IIJT(x)FI(x.) - JT(xo)(F.2 (x.) - F2 (xo) - J 2 (xn)(x. - x0))II <: ollx - xo l. (4.1.1.7)

By condition 3, that IIJi(xo)ll < a and above, it follows that

11X -_.Il < II( JT(xo)J(xo)Y)-11 [lIJT(xo)F 1(x.) - JT (xo)(F 2(x.) - F2(xo) - J2(x'))(x. -XO))Il

+ 11J1(xo)ll IIFN(x,) - F'(xo) - JI(xo)(x. - xo)ll]
<- • ' [ 0,1 ' - X.11 + ý-1X0 _- X.112]

which proves (4.1.1.2) for k = 0. From above and the choice of f,

u cl a + a ") 1 X X 1lXI - X.Il Ixo - x-I IT 2-

_ 1 X c • + , a I o + - A I I xa

•l~x- [TI -TA-c]
-cca + A

2-A llXo-X. 11

which proves (4.1.1.3) for k =0. The induction step is proven in similar fashion, with substitution of k + 1

for "I " and k for "0"1. 1

If F, (x.) = 0, then a can be chosen to be 0, and the convergence rate is q-quadratic in this neighborhood.

a gives a measure of the size of the residual of F, at x,. If F is linear in some neighborhood of x.,~ then a

can be chosen to be 0, since in this neighborhood, J(x) - J(x.) =0.

4.1.2 Adaptation of Levenberg-Marquardt Direction: Given a generalized Jacobian Ai of F at each

iterate Xk, the search direction dk solves:

(JkjJk + jALiI)dk = -g(Xk) = -JkTFk.

where Ak is a non-negative scalar which is chosen so that, among other properties, (4Jk&~ + VkI) is Positive

definite. This method is well-defined even when Jk does not have full rank. There is a sequence of iterates

{xk}), and there is a sequence of non-negative Scalars {/.tk}. There are differtnt techniques to choose Ak S

that at each iteration, (Jk'rJk +I AkI) is Positive definite. One technique is the trust region method, which

is discussed in section 4.2. Theorem 2 below, using the same conditions as Theorem 1, and the condition

that the jtk are bounded, gives local convergence properties for Levenberg- Marquardt directions. See for

example, Dennis and Schnabel 119831, Theorem 10.2.6 for the smooth case.
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Theorem 2. Local Convergence of Levenberg Marquardt for Linear Inequalities

Let the conditions 1-5 of Theorem I be satisfied. Let the sequence of non-negative scalars, {Pk }, be

bounded by .\! > 0. If a < A\, then for any c E ( 1. ,-.' ), there exists f > 0, such that for all xg E N(x., •)

t he Levenberg-Marquardt iterates:

S.-F A41 + tpkI)-jTFk,Xk-, I ::Xk - (JI& k ,l-J&

are well defined and obey:

llXk-I - X.!1 < c(a + Al) 11Xk -X-[1 + 1 "xk x. 112,
_ +- A! 2(A + AI)

IXk I X.rI1 <_ c(oa + Al) + A + A1 Irk - X.11 < Il~k X
2(A + .-A)

Proof. Choose a neighborhood. N(x, r) about x. as in Theorem 1. Since a < A, choose

cE 1,- _
cr +MA

I'hen c > I. Choose f1 such that J, JrJ + p0l is invertible and satisfies for x0 E N(x., c1 ):

II( 4J o + / 01)-' 1 _ C

Then let

f m r. A + Al -c( +Al) }
The proof then follows the same pattern as Theorem 1. 11
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4.2 Global Convergence Results

There are two basic approaches to assure that iterates, starting from any initial location, converge to a

stationary point. These are the inexact line search methods and the trust region methods. In section 1.5,

the Armijo line search properties and the global trust region method are described for the smooth case. It is

usually appropriate to apply the line search method in combination with steepest descent and quasi-Newto,

search direction methods, since these methods produce descent directions, directions d such that (d, g(x)) < 0.

Global trust region methods derive the step (scaled direction). If the model function is the second order

Taylor series approximation, then one might consider the direction to be a Newton-like direction, in that it is

derived using Hessian information. If the model function uses JT(x)J(x) to approximate the Hessian. then

direction is related to a Gauss-Newton direction. If the model function uses JT(x)J(x) + pI to approximate

the Hessian, then the direction is related to the Levenberg-Marquardt direction.

4.2.1 Inexact Line Search: We analyze properties of the function f, given by (3.1.2), necessary for the

Armijo line search to assure global convergence to a stationary point. See the Armijo line search algorithm,

(1.5.2). Notice that the function f, given by (3.1.2), is bounded below by 0. Further, Vf 2 is uniformly

Lipschitz of rank hAil 2 on all R' A well known result, due to Wolfe [1969,19711, shows the conditions for

the global line search to converge to a stationary point.

Theorem 3. Wolfe's Global Line Search Theorem. Let Vf be order I Lipschitz continuous on {xJ f(x) <

f(xo)} of rank -y. Suppose an algorithm produces Armijo stepsizes, Ak, with descent directions dk. satisfying

for all k:

(Vf(xk),Akdk) < 0 or dk = 0.

If f is bounded below and the angle between dk and -Vf(xk) is uniformly bounded away from orthogonality

then, either:

Vf(xk) = 0, some k or lim Vf(xk) = 0.
k -cc

The function f, given by (3.1.2), satisfies the conditions of Wolfe's Theorem, if Vfl is Lipschitz contin-

uous on {x[ f(x) < f(xo)} of some given rank, say -yl. Therefore, no adjustment is needed in the global line

search method to account for the generali:.ed Jacobian of f2. If a search direction method is chosen which

assures descent directions, and if the method assures that the directions and the gradients are uniformly

bounded away from orthogonality, then the Armijo line search assures global convergence to a stationary

point. Such direction methods could be Levenberg-Marquardt or a positive definite quasi-Newton method.

4.2.2 Global Trust Region Method: See (1.5.3) and (1.5.4). To analyze the global trust region method.

one considers the model function and how accurately it approximates the function, f. However, higher

accuracy implies more difficult computations to form and solve subproblem (1.5.3). We consider two model

functions, both using generalized Jacobians for forming the model. Suppose H(x) is a generalized Hessian
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of f(x), and J(x) is a generalized Jacobian of f(x). Let

M(S) :=f() + (gx), 3) + -(s, H(x)s) be the Hessian (or Newton) model,
2

L(s) :=f (x) + g(x), s) + -(S jT(x)J(x)s) be the Gauss-Newton model.
2'

Consider the generalized Hessian model first. The method finds a specific step s to satisfy agreement between

the model function and the function f. An initial 61 > 0 and x, is chosen. Using the current iterate function

value, gradient, and the generalized Hessian at xk, form the model function Mk(s). The subproblem below

is solved for sk:

min Mk(s) subject to Ilsil <_ 6 k. (4.2.2.1)
S

For theoretical convergence results, assume that the subproblem is solved exactly. sk gives the step which

minimizes the Hessian model (4.2.2.1) in a bounded ball about xk. How does the reduction in the f compare

with the reduction in the model function? Calculate the ratio:

f(xk) - f(xk + Sk) f(xk) - f(xk + Sk)
Mk(O) - Mk(s) f(xk) - Mk(sk) (4.2.2.2)

Define the step parameters and the trust region size parameter, the same as in section 1.5, denoting the

iterate subscript k. Let
/Afk .--- f(xk) -- f(xrk + Sk),

AMk := Mk(O) - Mk(Sk).

1) If rk < .25 , then set 6 k+1 := IIskII/4.

If rk > .75 and 1lskil = 6 k, then set 6 k+l :26k,

otherwise, set 6k+1 := 6k.

2) If rk !_ 0, then set xk+1 := xk; else, set next Xk+l :- xk + Sk.

Steps which reduce the objective function are called successful steps. The others are called null steps.

If rk < .25, then the step is called a region-reducing step. One may consider choosing a different generalized

Hessian, if there is a choice, when taking a null step or a region reducing step. If there is an infinite sequence

of iterates, then either the region reducing steps have an infinite subsequence or the steps, where r > .25,

have an infinite subsequence or both. Suppose there is an infinite number of iterates. If 6 k -- 0, then an

infinite number of iterates must satisfy, rk: < .25, in order that 6k -- 0, meaning that there must be an

infinite subsequence of region reducing steps. If there is an infinite number of iterates and infk 6k > 0, then

there must be an infinite subsequence of iterates, k, where rk > .25.

A first order condition for x. to solve (3.1.2) is that Vf(x.) = 0, or, equivalently, for all p, (Vf(x.), p) •

0. A point x. satisfies second order minimality conditions if for every generalized Hessian at x. and every

p, (p, H(x.)p) >2 0. Define "little o" notation, o(.), which means that a = o(h) 4 --- 0, as h -+ 0. We

use this notation to discuss order of convergence, such as linear or quadratic.
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Proposition 4.2.2.1.

Let S be a bounded set. Let f, be C 2 on W' and V2f, be Lipschitz continuous of rank -Y on S. Let

x., [xk}lkL E S, for all k, and let 11801 -- 0 and Xk -- x.. Then there exists an infinite subsequence of

iterates Xk, k E £ satisfying,

If(Xk + SO) - AIWSk)I JSk 113I.

Proof. £ denotes the set of indices of the subsequence. Since f, is C 2 , and its Hessian is Lipschitz

of rank -y on S, one can approximate f, second order with the first three terms of the Taylor series. This

property is easily verified. Given -y, the Lipschitz constant for V2 f, on S, let x, x + p E S, then

Ift(x + p) - fI(x) - (Vfi(x),p) - I(p, V2fi(x)p)I <

1 ( V2f 1 (x + tp) - V2fi(x)jj 11tpll dt jjp~l dt <

"-yjtpjj 11pll dt) 11pll dt <_

f3tllplll dt <_ 2 IIP113.

For the proof of the proposition, since sk --+ 0, let K, be sufficiently large such that for some k > K1 ,

Proposition 3.1 assures an identification neighborhood N(Xk + Sk, rk) about x, + sk, such that Xk E N(xk +

sk, rk). By hypothesis that V2 f, is Lipschitz continuous of rank -Y on S and the above result, then

If,(Xk + sk) - fl(Xk) - (Vfl(xk), Sk) - l(sk, V fl(x)sk)I _•sIISkII3.
2 6

By Proposition 3.3.8, for Xk E N(xk+sk, rk) and for any selection of generalized Hessian H2 (x) = J2(x)J 2 (X),

then

f2(xk + sk) -- f2(Xk) - (Sk, Vf2(xk)) - 2(Sk, JT (x)J2(xk)sk) = 0.

This implies for this k > Kh, that the part of the model for f2, denoted M2, satisfies:

M2'k) = f2(xk + sk).

Therefore,

If(xk + Sk) - Mk(Sk)l < 6IISkI13.

Let this k E E.

Now, since {xk}= is an infinite sequence, {Xk}k=K, + 1 is an infinite subsequence. Since I sII -" 0, find

K2 sufficiently large such that for some k > K 2 > K, one can again form an identification neighborhood as

above. Repeat this process, forming an infinite subsequence of indices k E L. II
Proposition 4.2.2.1 means that f(xk + Sk) - Mk(s3) = o(s00111) for k E £.

We state and prove the global convergence theorem, which is a generalization of Fletcher[19871.
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Theorem 4. Generalized Hessian Model Global Trust Region Convergence

Let f be given as in section 3.1. For the trust region method applied to the generalized Hessian model,

let {Xk,•__= E S, where S is bounded. If f, is C 2 on S, and its Hessian is Lipschitz of rank -y on S, then

there exists an accumulation point x. which satisfies first and second order optimality conditions.

Proof. If inf 6k -= 0. then by the discussion above, there must be an infinite subsequence of region

reducing steps, and hence, steps where rk < .25. Denote L£ := {klrk < .25}, where inf 6k = 0. If inf 6k > 0.

there must be an infinite subsequence of iterates such that rk > .25. Denote £2 := {kirkl > .25}. At least

one of the two cases occurs, and by S being bounded, the infinite subsequence has an accumulation point,

which is denoted x.. Consider the two cases:

1. rk < .25, 6k - 0 and, hence I[Sk[I -* 0, k E Li,

2. rk > .25 and inf 6k > 0, k E £2.

Case 1: Let g* denote Vf(x*). Argue by contradiction. Suppose there is a descent direction p at x., with

[Ip[I = 1 such that

(p,g.) = -a < 0. (4.2.2.3)

By Proposition 4.2.2.1, there exists an infinite subsequence of iterates Xk, k E £ C £L, such that for k E L

f(xk + S) = Mk (sk) + o(Ils1kI2),

A fk = AMk + o(ls.k112). (4.2.2.4)

Consider a step of length fk = IsJ.II along p. Since for any choice of generalized Hessian, Hk is uniformly

bounded on S, and by optimality of (4.2.2.1), it follows:

AMk > Mk(O) - Mk(f kp) -(gk, Wp) - (EkP, HkIkp)

= -- (gk, fkP) + O(fk)
= eka + o(f k),

by continuity of (.,e) and (4.2.2.3). Forming the quotient rk, since Eka + O(Ek) < AMk, for k E £, then
14f.
AM,

=mk + o(•2)
/Xý M'k

AMk"

Since ck , 0 and by (4.2.2.4), then rk - 1, which contradicts that rk < .25. Thus, it must be that g. = 0.

Again, arguing by contradiction, if not all generalized Hessians at x. are positive semi-definite, then

there must be at least one second order descent direction. We choose a specific normalized descent direction

d, along with a particular generalized Hessian H. at x., for which (d, H.d) < 0 is furthest from zero. Let d

or its negative be a descent direction with Ildil = 1, and the generalized Hessian H. at x. solve:

min (p, H(x. )p)
p,H(z.)

subject to: H(x.) E O9Vf(x.)

I38If = I.

38



A solution pair (d, H.) for the above problem exists, because of the compactness of the generalized Hessian

set, aVf(x.), and since we assume at least one such direction and generalized Hessian exists, by our argument

by contradiction. Therefore, for the solution (d, H.) of above, (d, H.d) = -Q for some a > 0. Then for all

H(x.) and for all directions p, such that 1I1P1 = 1,

(p, H(x.)p) Ž (d, H.d) = -a < 0. (4.2.2.5)

Notice for k E C C C1, for any other generalized Hessian of f2, denoted H', and its associated model

function, denoted M2', at xk + sk, that

f2(xk + sk) =~M2(sk) = M2'(sk).

For k E C C L1, choose a step length of (k, for direction ad, where a = ±1, so that (gk,ad) <_ 0.

Notice that ad also solves (4.2.2.5). Now, by the upper-semicontinuity of the generalized Hessian map,

Hk - H(x.) e OVf(x*). Then by optimality of (4.2.2.1), and by the upper semi-continuity of the generalized

Hessian,
LAMk _ Mk(O) - Mk(Ekad)

1 2

12 2

2 kQ• + o(ek.

Again, one can form the quotient ratio rk, as above, and from (4.2.2.4), then rk --+ 1 which contradicts that

rk < .25. Thus, H. is positive semidefinite, and any choice of generalized Hessian at x. is also positive

definite. That is, for any direction p, such that IIfpI = 1, it follows that, for any A > 0

0 < (d, H.d) <_ (p, H(x.)p)

0 < (,\d, H.Ad) < (,p, H(x.)Ap).

Case 2: In this case, there is a subsequence k E £2, where f, - f. = Zk~=l(fk - fk+1) _ -kE'C. /k _

.25 "kE C 2 AAk, since rk 2> .25 for k E £2. Since f is bounded on S and x. E S, then f, - f. is uniformly

bounded, and it must be that LMk - 0. Let 6 satisfy: 0 < 3 < inf 6k. Let § and H., a particular generalized

Hessian of f at x., solve:
min (s,H(x.)s),v,H(x.)

subject to: H(x.) E 8Vf (x.) (4.2.2.6)

(4.2.2.6) has a solution since the generalized Hessian set is compact. Define M.(s) := f. + (s,g.) + ½(s. Hs).

Define ± x. + §. For sufficiently large k, by choice of 3, and since x. is a cluster point of {XkI k E L2}.

then

11- - xk ll 11I11 + Ixk - x.II =11 + IIJk - x.11 <6k
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This implies X - Xk is feasible for the subproblem (4.2.2.1). Thus,

Alk(± - Xk) Ž "k(Sk) = fk - A•Ak,

since Sk solves the subproblem (4.2.2.1). In the limit, Ak - f,, gk --. g, ŽLMk - 0, and X -
1 k -S s. Since

H. solves (4.2.2.6), then for any other H(x.), define

M,'(g) +f + (g.) + .(iH(x.)&) A l.(i),

and then
i'~(.) _> AM,(.) _ f. = f,(0) = M'(O).

Thus, s = 0 also minimizes M.(s) on Ilsl <_ 6. Since the constraints are not active at s = 0, then first and

second order optimality conditions must be satisfied for the subproblem (4.2.2.1). That is, g. = 0. and H.

must be positive semi-definite. Therefore, on lsil <_ 6 and for any generalized Hessian H(x.) at x., then

0 <_ (§, H.,,9) <_(s, H(x,)s).

This implies that H(x.) is also positive semi-definite.

If the lower level set of the first iterate is bounded and since the function values at the iterates decrease

or stay the same, then he existence of the bounded set S required for the theorem is satisfied. The coercive

properties of a function for which this is satisfied are discussed in section 4.3. We show in section 4.3, that

this condition is satisfied for the specific function f determined by (2.5.1). If the sequence of iterates are

finite, that is nAMk = 0 for some k, then first and second order optimality conditions are sati-fied, by an

argument similar to the one in case 2 of Theorem 4.

We now consider the Levenberg-Marquardt method based on a trust region method. Let Xk E R' and

J(xk) be a generalized Jacobian of f at xk. The generalized Jacobian model function for the non-linear least

squares problem is:

M(xk + Sk) := f(xk) + (Vf(xk), sk + -I(Sk, jT(xk)J(xk)sk)
2

Let

Bk :- J(xk)TJ(xk).

In solving for the model trust region, one wishes to find the direction sk of norm less than or equal to some

6 > 0, such that in this direction, there is agreement between the decrease in the model function and the

decrease in f. Find sk which solves:

min f(xk) + (Vf(xk), s) + 1 (s, JT(Xk)J(xk)S)
J2 (4.2.2.7)

subject to: (s, s) < 62.

The following proposition shows the conditions for optimality and uniqueness of a solution of (4.2.2.7). This

proposition is found in most elementary material. See, for example, Fletcher[1987].
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Proposition 4.2.2.2.

Sk solves (4.2.2.7) == (sk, Sk) < 62 and there exists p > 0. such that

(Bk + pI)sk = -Vf(xk),
(4.2.2.8)

P((sk, SO) _ 62 ) = 0.(42.8

Furthermore, if Bk + YI is positive definite, then si, is the unique minimizer.

Proof: Since Bk is positive semi-definite, (4.2.2.7) is a convex problem. (4.2.2.8) are the KKT condi-

tions. The uniquenss of sk is assured by the strict convexity of the Lagrangian of (4.2.2.7):

(Vf(Xz), s) + -(s, (Bk + p)s).
2'

For the case, where p is chosen so that Bk + AI is positive definite, there is a unique Sk. Given a specific

6, there is an associated p which solves (4.2.2.7). Tb" larger the 6, then the smaller that p is. Thus, the

problem becomes: find the 6, as large as possible, while still assuring Bk -: tLI is positive definite. The trust

region algorithms do not solve for p exactly. Instead, an approximation process is used, where 6 is decreased

or increased using the trust region parameters outlined for the generalized Hessian model. This approach

compares the changes in the model function and the function f, and adjusts 6 and sk appropriately, the

same as for the generalized Hessian trust region method.

By choosing J 2 (xk) appropriately, one may avoid the need for Ak > 0 at some iterates. For the function

f given by (3.1.2), choose a specific generalized Jacobian at xk, denoted J• where for indices i E 1040,

choose (Jk)i = a1 . If for a direction s, such that (s,aj) $ 0 for at least one i r= fO(xk), then for any other

choice of generalized Jacobian J2(xz,),

2J S, J2 S) > J2X),J2(Xk)s).

The model function based on the Hessian approximation JT(xk)J(xk) gives a positive semi-definite model.

Thus, in some cases, this choice of generalized Jacobian which gives an increase in positive definiteness may

be sufficient to assure:
(JI(x)s, J1(x)s) + (J2s, 2s) > 0,

compensating for lack of positive definiteness in the function f1 at Xk. This strategy of choosing the most

positive definite choice of fr(xA,)J(x,) among generalized Jacobians of (Axk - b). increases the possibility

of avoiding pk > 0 for some iterates.

If F1 is highly non-linear near a stationary point, and if the residual is large, then using the Hessian

approximation, .JrJ, may not work. Varah[1990 uses statistical arguments to compare the relative sizes of

the Hessian terms in the non-linear least square problem. He reports that even when the the norm of the

term Q(x) is relatively large with respect to the norm of jTJ, the algorithm using only JrJ works well.
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4.3 Recession Behavior of the Least Square Problem Formulation

Notice in the trust region algorithm, that the existence of an accumulation point of the sequence of iterates.

xk, depends on whether the iterates stay bounded. Since the least square objective function f is bounded

below, we would like to characterize a property of f which assures, that as long as the function values at the

iterates significantly decrease (by satisfying the line search conditions or the trust region conditions), that

the sequence generates an accumulation point. One condition to avoid is that the function f(x) recedes, that

is does not increase, as IIxII -- oc. This property of a function is called recession behavior. As an example,

a function such as - recedes to 0 in the direction d = 1. Given x0 > 0 and A > 0,
X1

lim 0,A--oc x0 + Ad

and is strictly decreasing as A +oo. Another property, contrasted to recession behavior, is called

coercive behavior. Define a function as coercive if for all x,

Iim f(x) = +00 as J]x[[ -- oc.

Recall that solving for

inf ((Ax - b)+, (Ax - b)+) (4.3.1)
2

is equivalent to solving the quadratic programming problem:

inf (z, z), (4.3.2)

subject to: Ax - b < z,

and the optimality conditions for the unique z. and solution(s) x which solve (4.3.2) are:

AT z. = 0,

Ax < b + z.,

Z. > 0O

(z., Ax - b - z.) = 0.

Denote the solution set of (4.3.1) as 0 := {xI Ax-b < z. and (z., Ax-b-z.) = 0} # 0. Let := {i z* > 0}

and V := (ii z*' = 0}. Denote A,, the matrix formed from the rows of A for the indices i E L. Then

S1 = {xI Aix = bi + z; and Ajx - bi, <_ 0}. (4.3.3)

If d is some direction, such that for x E 0 implies x + Ad E Q, for all A > 0, then:

AI(x + Ad) = bi + z; and Ar,(x + Ad) - b, <__ 0.

Then for all A > 0:

AIAd = 0O, (4.3.4)
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A1 ,)Ad < O,. (4.3.5)

(4.3.4) implies that d E MA(A 1 ), the null space of A,. For (4.3.5), equivalently,

ap > 0 implies (d. AT, o) <_ 0.

Let

K := {ATala > 01r}

be the cone generated by AT. Denote the polar of K,

K* := {dj (d, c) < 0 for all c E K}.

One can express the condition that d is a direction of recession of Q, as follows:

d E V(Al) n K*. (4.3.6)

Recall that .f2(x) := ½((Ax - b)+, (Ax - b)

Proposition 4.3.1.

If x 0 l and d E .A(AI)AK*, then there exists A0 > 0, such that for A > Ao, then f 2 (x+Ad) = f 2 (x+Aod)

and (Vf 2 (x + Ad), d) = 0.

Proof. For i E I, it follows that A1 (x + Ad) = Aix, for any choice of A. Let rp := At'd < 0. For i E I'.

such that r, < 0, choose A0 to satisfy:

(x + Aod, ai) - bi <_ 0.

For A > A•, then f 2 (x + Ad) = f 2 (x + Aod). The second part of the proposition, that for A > A0 , (Vf 2 (x +

Ad),d) = 0 is implied by the property that f2(x + Ad) = f 2 (x + Aod). I1
Recall that fl(x) := i(FI(x), Fi(x)). Since f, is bounded below by 0, then liminfy fl(y) >0 . There

may be directions along which which f, recedes to some 03, 03 > 0, never reaching it. Define a recession

direction d of f, at some x, if

lim inf f, (x + Ad) = lim f, (x + Ad) < oc

The functions f, and f2 from the problem formulated from the assignment problem in section 2 do not

have a common direction of recession. The function fj(x) = "J w(•( - wj) 2 is a coercive function. f2 is

also coercive, since the polyhedral set defined by (2.3.1) is a polytope. Both f, and f2 are bounded below.

Therefore, if steps of sufficient size are taken, with sufficient reduction in the objective function to satisfy the

Armijo conditions, and the angle between the step and gradient stays bounded away from orthogonal, and

if there are an infinite number of iterates, then the sequence of iterates must have a cluster point. Similarly,

for the trust region conditions to satisfy successful steps for an infinite number of iterates, there must be a

cluster point in the sequence of successful iterates.
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5 Properties of Least Square Problem for Solving a System of Convex Inequalites

One can extend the results for systems of linear inequalities to more general functions. This section defines

the least square formulation for solving finite systems of inequalities and develops approximating properties

of generalized differential constructs in modeling of convex C2 functions. The results are similar to those

for the case of linear inequalities developed in section 3. In section 5.1, the'least square problem is defined

for this case of convex C 2 inequalities, and the numerical stability of this problem is discussed. In section

5.2, the approximating properties are developed. The existence of an identification neighborhood is verified.

The details for selecting generalized Jacobians and Hessians are addressed. Using the identification neigh-

borhood property, several approximating results are developed using models based on generalized differential

constructs. In the case of a finite system of inequalities of non-linear C2 convex functions, the generalized

Hessian model of the least square objective function does not perfectly approximate in the identification

neighborhood of a designated point (See Proposition 3.3.8). However, the generalized Hessian model doe-

provide second order approximation in an identification neighborhood of a designated point. Similar results

are obtained for the generalized Jacobian model of the mapping F+, as well as for the generalized Hessian

model for Vf. These approximating results are used in the development and analysis of the algorithms in

section 6.

5.1 Statement of Problem

Suppose F, : Rn '-* R, i = 1 .... m are convex functions, which are C2. We wish to find x which solves:

F(x) <_ 0,

in a least square sense. Define

f(x) : (F+(x), F+(x)).

Notice that f is a finite valued convex function, being the sum of convex functions (the pointwise maxima

of the individual convex functions and the constant function zero). We wish to find x which solves:

inf f(x). (5.1.1)

This problem can be expressed as a convex programming problem in R' x Rm:

inf I z,z) (5.1.2)
(x,z) 2

subject to: F(x) - z < 0.

The infimurn of this problem (5.1.2) exists, since the constraints are feasible and the objective function is

bounded below. If a solution (x, z) exists, then z is unique since the constraints are convex and the objective
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function is strictly convex . Let J(x) be the Jacobian of F(x). Then the KKT conditions for any solution

(x,z) of (5.1.2) are:
JT(x)z = 0 E R',

z >_ 0 E Rm ,

(5.1.3)

F(x) - z < 0 E Rm ,

(z, F(x) - z) = 0.

In section 3.2, numerical stability (based on the definition of Robinson[19751) of the solution set of the

least square formulation for solving systems of linear inequalities was established. Robinsonll9761 treats the

case of systems of inequalties of nonlinear functions and shows an equivalence between regular systems and

stable solution sets. For the case of a system of inequalities of convex C 2 functions defined in (5.1.3), the

formulation as a least square problem also yields a system of inequalities which qre regular and hence the

solution set is stable.

5.2 Approximating Properties of Taylor Series Using Generalized Differential Constructs

Since we assume F is convex and C2 and hence finite, then F+ (x) is Lipschitz continuous of some rank -y

in a neighborhood of x, and then there is a well-defined generalized Jacobian set of F, (x). Since the gradient

of f(x) exists and is Lipschitz continuous on lower level sets, then there is a well-defined generalized Hessian

set of f(x), comparable to the linear case in Section 3. We use the same notations for these constructs in

this section, as in Section 3. Denote the Jacobian of F at x as J(x). Using the definition of the generalized

Jacobian, similar as in Section 3, the possible choices of generalized Jacobian J(x) of F+(x) are:

0 if Fi(x) < 0,
J(i, j) = (i,j) if F1 (x) > 0,

AjJ(i,j) if Fj(x) = 0, where Ai E [0, 11.

Proposition 5.2.1. Existence of Indentilication Neighborhood

Let x. be given and let
I°(x,) f- ijF,(x,) = 0},

1+(x.) : {iF(x.) > 0},

l-(x,) := ijF,(x.) < 0).

Then there exists a neighborhood N(x,, r) of x., such that for x E N(x., r),

10(x) C 1°(X.),

1 +(x ,) -- l (x )\ I °(x . ) , (5 .2 .1 )

Proof. Define Cj .= {xf Fi(x) :_ 0}, and note that since each F, is convex and C 2 and hence finite, then

each C1 is closed and convex. If i E I(x,), then F2(x.) < 0, and since each F, is continuous there exists

a neighborhood N(x.,ri) about x., such that for x E N(x.,r1 ) implies Fj(x) < 0. If i E l+(x.), then
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F,(x.) > 0 and x. ý C, which is a closed convex set. Thus, there exists a neighborhood N(x., r,) about x.,

such that for x E N(x,, r1) implies F,(x) > 0.

Choose r > 0 so that,

r < min{ri}.

If x E N(x., r), then
f°(x) C 1°(x.),

Itx. =I(x)\I°(x.),

l - x ) - (x )\ l °(x ,).

II

Proposition 5.2.1 shows the existence of an identification neighborhood holds for the C2 convex functions.

In the linear case, one can perfectly model (Ax. - b) ÷ from points in an identification neighborhood using the

first order Taylor series based on any choice of generalized Jacobian. For the case of systems of inequalities

of convex C2 functions, the proposition below shows that the generalized Jacobian model attains first order

approximation of F4,(x.) from any point x within this Proposition 5.2.1 neighborhood of a point x,

Proposition 5.2.2. First Order Approximation Using a Generalized Jacobian Model

Let x, be given and let N(x., r) be an identification neighborhood which satisfies (5.2.1) in Proposition

5.2.1. Let x E N(x.,r), and let p x. - x. Since each F1 is C 2 convex, denote -y to be the Lipschitz

constant of JF on N(x., r). Then the following holds:

1. For any J(x) E aF+(x),

F±(x + p) - F+ (x) - J(x)p = o(Jlplj),

and specifically,

I1F+ (x -+ p) - F+(x) - J(x)pIf 11_p112.
2

2. For x E N(x., r), any generalized Jacobian J(x.) E aF+(x.) satisfies:

IIF+(x) - F+(x.) - J(x.)(-p)I <_ IlJio(.,II Ilpjl + 211pll.

3. For a particular x E N(x., r), there is at least one generalized Jacobian J(x.) E 3F.,(x.), which satisfies

for this particular x:

IIF.(x) - F+(x.) - J(x.)(-p)Il <_ 2ipI2.

Proof. For 1, since N(x., r) is bounded, and F is convex and C2 , and -y is the given Lipschitz constant

of J(x), then the Jacobian of F on N(x., r) satisfies, by Proposition 3.3.3,

11F(x + p) - F(x) - J(x)pl < 11lp112.

Note that x + p = x.. Consider any i:
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1.1 If i ý lf(x,), so i ý 10(x) and thus, i E [-(x) U I÷(x). In these cases, (J(x)), is unique.

1.2 If i E I(x.) and i E 1-(x) U P'(x), then, as above, (J~x)), is unique. If i E 1(x), then F1(x) = 0 and

since F, is convex, then F,(x-+ap) < 0, for anvo E [0, 11. Since Fi(x.) = ", = F,_! Lti be approximated

first order about x, by using (J(x))i, then choosing (J(x)), = A(J(x))i, for any A E [0, 11, gives ; i

good or an even better approximation. Specifically, from the Lipschitzian property of i(s) for some

[jFj(x.) - F,(x) - (J(x))Xpt[ <_5 211p11

This means that
l(F,-(x,))j - ( F.(x)), - A(J(x)),pjI

II - A(J(x)),P11
A_ -ý2 11P 112

<Ai 2P112.

2

In either case 1.1 or 1.2, then

1IF+(x +p) - F÷(x) - J(x)pjj 1 1 2.

2

For 2, since JF is Lipschitz continuous of rank -y, and since all the error in approximating F+(x) using a

first order approximation at x. is contained in the components with indices i E 10 (x.), then

(IF.(x) - F+(x.) - J(x.)(-p)II _• lIJIj(x.)j II (pj + 211P112.
2

For 3, let a particular x E N(x., r) be given and let

10 := C(X,)\l°(x),

1+ :=I+(x) n I°)(x.),

V 1-(x) n 10 (x.).

For i E 1, choose (J(x.)), := (J(x.))1 ; for i E V, choose (J(x.)), := 0; and for i E 10, choose (J(x.))i

A(J(x.))i, where A E [0, 11. Then this particular choice of J(x.) E OF+(x.) satisfies for this particular x,

by 1 and 2 above, and direct calculation,

IIF_(x) - F,(x.) - J(x.)(-p)ll < '11P112.

The gradient of f(x) is well-defined on R/. Vf(x) = JT(x)F+(x), for any choice of J(x) E OF.(x). Vf

is continuous, being the gradient of a differentiable convex function. Since f is convex, bounded below and

continuously differentiable, then the gradient of f is Lipschitz continuous (order I) of some rank -y on lower

level sets. If Af > 0 and S := {xj f(x) <_ M}, then there exists -y > 0, such that for u, v E 5,

IIVfJ(U) - Vf(v)0[ < -YllU - i'll. (5.2.2)
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F'herefore. the zeneralized Hlessian set of 7f(x), denoted )Vff(x), is well-defined on S. Selecting a generalized

Htessian for f is done similarly as in section 3 Let F", denote the Hessian of F,. One can calculate the

geeral.zed Jacobian of 7f (x. F. (x), using the definition. Let 9 be the set of points where Vf is

tiot jttferenttable ('alculating, any limit Ilk as X a':

fk liai 7 f (,fiq,) where y, Q

lint j!j(yt)'r i) •- j(yj)TrJ(yj) where yj

lim i Fiyi)F(yt) + ,7(y) 7'J7(yV) where yV ý 9,

here 1y: t; F,; yi,) > 0t Using the same type of argument in Section 3, one can show the choices of

-reneralized Hessians depend only on the choice of generalized Jacobian, J(x) E 9F-(x),

H "r d jr J x i T" ) 1 I-X) = JT()j-x)(x)+ 1 rF(x)F,(x) for some J(x) E OF±(x). (5.2.3)
;A1l(x)

Proposition 3.3.S assures that the generalized Hessian model (based on any generalized Hessian at x

attains perfect approximation of the linear inequalities least square function at x. from any point x in an

identification neighborhood of x.. Proposition 5.2.3, below, shows that the generalized Hessian model (based

on any generalized Hessian at x) attains second order approximation of f(x.), the least square function of

inequalities of convex C2 functions, from any point x in an identification neighborhood of x..

Proposition 5.2.3. Second Order Approximation Using a Generalized Hessian Model

Let x. be given and let V(x., r) be an identification neighborhood which satisfies (5.2.1) in Proposition

521 Since F is C2 convex on N(x., r), let -, be the order 1 Lipschitz constant for V 2 (1(F(x), F(x))). Let

x N ,".., r and let p x. - x. Then for any J(x) E OFi(x) which determines some H(x) E OVf(x),

fia I- p) - f(x) - (p, Vf(X)) + I(p, H(x)p) =011P12,

or specifically, for the L.ipschitz constant. -_, of V 2 (½(F(x), F(x))):

WIf(X 4 p) - f(.X) - ýp, Vf(x)) - -(p, H(x)p)I 11P1_ .

Proof. ' he proof is similar to the proof of Propositin 5.2.2. Note that x + p = x.. Let -y be an order 1

Lip'w-hitz constant of "f IF(x). F/r)) on N(x.. r), which exists xince N(x., r) is bounded and F is convex
( Co ('unsider any Y.

I If 4* 1,'.. then z 4 lIxý If lE I (x) U I'). then (J(x)), is unique.

2 If I - r. ; If i e I (xa - I- (.r), then (.J2(x)), is unique. If e E1(x). then there are other possible

zneralized Jacobians, J(x) E i)F' (x). Notice that the Hessian term cancels out, since F,(x) = 0. Since

"F, _r p. F" x p,., (an be approximated second order by the second order Taylor series about x using



the Hessian model with V2 ½(F(x), F(x)), then choosing (J(x))i = \f(J(x))i, for any A E [0, 11, gives

just as good or an even better approximation, as in the proof of Proposition 5.2.2.

In either case, then

If(X + p) - f(x) - (p, Vf(x)) - I (p, H(x)p)l <_ IIPI.
26

From (5.2.3), any generalized Hessian H(x) of f at x can be written as

H(x) :=J T (X)J(X) + Q(x)
where Q(x) E ri F(x)Fi(x). (5.2.4)

iEl'(X)

Lemma 2.

Let x. be given. Then there is some a > 0 and there is a neighborhood N(x,, r) of x., such that for

x E N(x,,r), given any J(x) E 49F+(x) and any J(x,) E 9F+(x.),

11(J(x) - J(x,)) T F+(X.)ll • aX - X.11_

Further, there is some /3 > 0 such that for any x E N(x,,r), any J(x) E aF+(x), and any J(x.) E aF+(x.),

II(J(X) - j(x,))T F+(x,) - Q(x,)(x -. X.)ll _ý 3Ikr - X.112.

Proof. For the first part, let 1+(x.) := {iJ(F(x,))j > 0}. If F(x,) < 0, then the lemma is satisfied, so

consider the case where I+(x.) 5 0. Form a neighborhood, where r > 0 is chosen so that if x E N(x,,r),

then

I+(x.) C I+(x) := {il (F(x))i > 0}.

For indices i E I+(x,), then (J(x))i is unique and (J(x,)), is unique. Since F is convex C 2, then JF(x) is

Lipschitz continuous, of some rank -y of order 1 on N(x,, r). Then one can approximate:

1l(J(X) - J(x.))T F,(x.)Il = 11 E (j,(X) - J,(X,))F,(x,)II <__ -ylF+(x)IlI Izx - x.1 *< alIlx - x.,,
iE I+ (X.)

for any a > -y1F+(x.)II.

For the second part, since F is C 2 convex, let -yQ be the order I Lipschitz constant of Q(x) on N(x,, r).

This implies there exist - for i E 1+(x.) and x E N(x.,r), such that

tl(J(x) - J(z.)), - F,(X.)(x - X-)ll <__ i1llX - x, 11'.

It follows for any x E N(x,,r). any J(x) E aF+(x), J(x,) E aF+(x,), then

II(J(x) -J(x,)'F÷(x.) -Q(x.)(x - x,)1 = ! E Fi(x,)((J(x) -J(x,)), - C(x,)(x - x,)II

jI 1÷(T.)

* fllx - x*112,
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since for i E I'(x.), (J(x))i is unique and (J(x.))i is unique. II
Lemma 3, below, shows that the first order Taylor series of Vf (about a point x in an identification

neighborhood of a point x.) based on a generalized Hessian of aVf(x) attains first order approximation. The

lemma also shows for each particular point x, the existence of at least one generalized Hessian Hx E aVf(x.)

for which the Taylor series about x, models Vf(x) first order. The notation Hx E aVf(x.) is used since

the Taylor series about x. using this particular generalized Hessian Hx models Vf(x).

Lemma 3. First Order Approximation of Vf.

Let x. be given. Let N(x., r) be a Proposition 5.2.1 identification neighborhood of x.. Since F is C 2

convex, let -y be an order 1 Lipschitz constant of V 2 (-(F(x), F(x))) on N(x.,r). Thei, for x E N(x. r) and

for any J(x) E aF+(x) which determines some H(x) E OVJ (x),

[IVf(x,) - Vf(x) - H(x)(x. - x)I1 = oIIx. - x[l,

or specifically, for the Lipschitz constant -y:

l1Vf(x.) - Vf(x) - H(x)(x. - x)11 -llx - x112.

Additionally, for each particular x E N(x., r), there exists a generalized Hessian, Hx E aVf(x.), such that

IiVf(x) - Vf(x.) - H;(x - x*)ll 2IIX - x.112.

Proof. Let p = x, - x. For the first conclusion, use the same argument as for Proposition 5.2.2. Since F is

convex C 2 on N(x,, r), then V 2 ½(F(x), F(x)) is Lipschitz continuous (order 1) of some given rank y. Then

IIJ(x + p)'rF(x + p) - j(x)T F(x) - yT(x)j(x)p _- Fi(x)ri(x)pll s 2 1lop!1.
i

Now, for each i consider the same cases as in Proposition 5.2.2. The only case where there is not a unique

choice of generalized Jacobian, J(x) E 9F+ (x), is for i E 10 (x,)flI°(x), where again, any choice of generalized

Jacobian gives a even better or just as good an approximation, as in Proposition 5.2.2. Therefore. the first

conclusion follows.

The second result uses the same argument as in Proposition 5.2.2.

An approximating property of Lipschitz continuous Jacobians follows:

Proposition 5.2.4.

Let G : -R -- !R' be C'. Let x. be given, and let the Jacobian of G, denoted JG, be Lipschitz

continuous of order -y on some neighborhood N(x., r). Let u, v E N(x., r). Then,

I'G(v) - G(u) - J(x.)(v - u)l1 ^_ (1(lv - x.I + Ilu - xII)Ilv - Ul11.
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Proof.

IIG(v) - G(u) - JT(x.)(v - u)II =1 J(u + t(v - u)) dt) (v - u) - J(x,)(v - u)II

I7(u + t(v - u)) - J(x.)lI da II(v - u)II

< YII( - t)u + tv - x.1 dt 11(v - u)II

= -yII(1 - t)(u - x.) + t(v - x.)II dt 11(v - u)II

^_ (1I- t) dt I(u - x,)4I + t dt 11(v - x.) II) 1(v - u)[I

-f (11v - X-II + Ilu - x-11) 11v - u11.

The result below shows one more approximating property, relating other points in the identification

neighborhood of a point.

Lemma 4.

Let x. be given. Let N(x,, r) be a Proposition 5.2.1 identification neighborhood of x., and let u, v E

N(x.,r). Then there is some a > 0, such that any J(v) E OF(v), any J(u) E aF(u) and Q(x.) =

Zt+(..) ri(x.)Fi(x.) satisfy:

II(Jýv) - J(u))T F+(X.) - Q(x.)(v - u)II _ a(IIv - x.1 + IIu - X.Il)I1v - U11

Proof. Let N(x., r) be an identification neighborhood of x.. Let -yj be the order 1 Lipschitz constant of ri

on N(x.,rH, and let u,v E N(x.,r) and J(v) E oF(v), J(u) E 9F(u). Then

II(J(v) - J(u))T F+(x*) - Q(x.)(v - u)I = E F1+(x.)((J(v) - J(u))- i(x.)(v - u))Il.
iEl+(z.)

Since I+(x.) C I+(u) and I+(x,) C I+(u), then if i E I+(x,), then i C I+(v) and i E I+(u), and

(J(v)), = (.7(v))1 , (J(u)), = (.7(u))1 . By Proposition 5.2.4 above, for each i E I+(x,), then

II(J(v) - J(u))i - I,(x.)(v - u)II <__ !(Ilv - x.I1 + Iju - x.1l)Ilv - uII,

and then
11 E F,+(x.)((J(v) - J(u))s - r,(x.)(v - u))II <

iEI+(X.)

SF,+ (X-) IN (11V - X. 11 + H~u - X. It)IIV - U11 :
tE-I+(z.)

o(IIv - X. I + Lu - x. I)ILv - U11,
where a = ZtEf÷(x.) 4Ft+(x.)II.

II
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6 Generalization of Algorithms for Solving a System of Inequalities of Convex C2 Functions

In this section, we develop algorithms for solving the system of inequalities of C2 convex functions in a least

square sense and analyze convergence properties of these algorithms. Refer to the algorithms described in

section 1.5 for the solution of least square problem of systems of equalities. We extend these algorithms for

the case of inequalities of convex C2 functions using generalized differential constructs. In section 6. 1. local

convergence results are addressed. We extend Newton's method and show q-quadratic local convergence.

We compare this method with the generalized Newton's algorithm for nonsmooth functions developed by

Robinson[1990] which he bases on a point-based approximation. We develop and analyze a quasi-Newton

symmetric secant update in this section and define a bounded deterioration property for secant updates

using generalized differential constructs. By assuming this property holds for the secant updates, we show

local q-linear convergence. The extensions of Gauss-Newton and Levenberg-Marquardt methods for the case

of systems of convex C 2 inequalities are discussed, as well as the local convergence results. In related work,

Burke[1983], and Burke and Han[19861 describe a method for solving this type of system of inequalities,

using the distance function as a penalty type objective function and projections to derive search directions.

They present global convergence results for their search direction using an Armijo line search method. Their

local second order convergence result for the non-linear functions depends on the Mangasarian Fromowitz

constraint qualification (MFCQ) condition, which is discussed with the results in this section.

In section 6.2, we discuss global convergence of the Armijo line search and trust region method applied

to solving a system of inequalities of convex C 2 functions and equations of non-linear C 2 functions in least

square sense.

Consider the problem, similar to (3.1.2), with the function F2, now being convex in each dimension, and

C 2 . That is:
F, : ' - R,1 where F1 is C 2 ,

F 2 : F__ W,•
2  where F 2 is C 2 and component-wise convex,

and we wish to solve:

inf f(x) where f(x) :=f,(x) + f2(x) :=2 (F1 (x), F,(x)) + F (6.1)

Denote rý to be the Hessian of (F1 )i and ri to be the Hessian of (F 2)j. Denote J1(x) to be the Jacobian of

F1 (x), and J 2 (x) to be a generalized Jacobian of F2+. Then a generalized Hessian of f is:

ml

H(x) := H,(x) + H2(x) = JT(x)J,(x) + E ri(x)(F,(x)) + J T(x)J2(x) + Z F(x)(F2 (x)h.

,=1 iEI+(z)
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6.1 Local Convergence Results

Local convergence results use the unscaled search direction, as in section 4.1.

6.1.1 Newton-like Method for Solving Vf(x) = 0: Define the generalized Hessian Newton Method for

minimization, where Hk denotes a generalized Hessian at iterate xk. Then dk solves:

Hkdk = -Vf(xk),

where Xk•1 := Xk + dk. A solution dk exists and is unique if Hk is invertible.

Theorem 5. Newton-like Method for Solving Convex Inequalities and Non-linear Equations in a Least

Square Sense.

Let f be given as in (6.1), where F1 is C2 and F2 is C2 convex. Assume there exists x., such that

Vf(x.) = 0.

1. Let r > 0, and let N(x., r) be a neighborhood on which V2 fj is Lipschitz continuous of order I for

some rank. f, > 0.

2. Let some /3 > 0 be such that any generalized Hessian H(x.) E aVf(x.) is invertible and satisfies:

II•!-l(X.)1l <! 0.

Then there exists f > 0, such that if xo E N(x., E), then the sequence of iterates, Xk+1 := xk-H-i (xk)Vf(Xk)

are well defined and converge to x. and satisfy for some y > 0,

IIxlI. -X- .II < I-yIZXi - X. 11-

Proof. Since, by hypothesis, all the generalized Hessians H(x.) E aVf(x.) are invertible, Proposition 1.3.1.

assures a neighborhood of invertibility about x.. By choosing E sufficiently small, for any x E N(x.. E), and

any H(x) E aVf(x), then H-(x) exists and

11H-'(x)II <_. 0

By Lemma 3, since F2 is convex and C 2 , and choosing c sufficiently smaller if necessary so that N(x., t)

is an identification neighborhood of x,, then for some 7Y2, for x E N(x., f) and any generalized Hessian of

f2(x), 112(x), it follows that

I1Vf 2(x.) - Vf 2 (x) - H2 (x)(x. - x) 11 - 11 x. - x112.
2

Given 1, that V 2 f, is Lipschitz continuous of some rank -y on N(x., r), then for v = -Y1 + Y2 > 0. choosing

S< r, then for all x E N(x. f):

IlVf(x.) - Vf(x) - H(x)(X. - x)II _ -YIIX. - x1l2.
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Choose E smaller, if necessary, to satisfy:

c < (ain 1,

We show the case for k = 0. Since H-'(x) exists on N(x,.,), then xI is well-defined and satisfies, for any

generalized Hessian of H(xo):

XI -x, = o - x, - H-l(xo)Vf(xo)

=o -x. - H-'(xo)[Vf(xo) - Vf(x.)]

H-1(xo)[Vf(x.) -Vf(xo) - H(xo)(x. -xo)l.

Using the result above, then

Ijxi -xo0_ IIH-'(xo)ll IIIVf(x.) - Vf(x0 ) - H(xo)(x. -'x)1II

< lz0jxo - x.II-

Using induction for the general k and k + 1 is accomplished the same way. II

This result establishes q-quadratic local convergence of this Newton-like method based on generalized

Hessians. Robinson[1990] extended Newton's method f-r nonsmooth functions having a point baseu approx-

imation satisfying second order approximation. For our special least square function, using a linearization

about xk based on a generalized Hessian at xk to model Vf(x.) assures a second order point based second

order approximation. Robinson's point based approximation is not required to be linear and thus. rather

than using the Banach lemma for invertibility, he develops an implicit function property of invertibility which

handles the non-linear point based approximation. Our result is specialized in that we define a specific linear

point based approximation. The result in Theorem 5 closely parallels the traditional proof for the smooth

case. Robinson showed how to use a point based approximation to get a convergent Newton's method, while

this work shows that a system of linear equalities naturally gives rise to a point based approximation.

6.1.2 Adaptation of Symmetric Secant Update Q.iasi-Newton Direction: A problem with using

Newton's method for finding search directions is that the Hessian or generalized Hessian may not be positive

definite, and possibly not invertible, so d may not be a descent direction. However, even if the generalized

Hessians are all positive definite in a neighborhood of a stationary point, the difficulty in computing the

Hessian at each iterate is another reason that practical algorithms use a quasi-Newton method. This approach

uses Hessian approximations, avoiding computational steps to calculate the full Hessian. We extend the

special symmetric secant update method for least square nonlinear equations to solve for a zero of Vf(x).

The method uses the available generalized Jacobians, J(x), and uses a secant update, Bk, to approximate

the second order term:

MnI

Bk ;t Q(Xk) =E(Fi(Xk)ri(Xk) + E (F2 (xkUir5(xk).
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Denote

F(s) F1=

An algorithm using the symmetric secant update for generalized Jacobians is as follows: Solve for dk

(jT(xk)J(xk) + Bk)dk = -Vf(xk), and set:

Xk-I :Xk + dk,

Yk z- VI(xk.-) - Vf(Xk). (6.1.2.1)

y :JT(xk.l)F(xk.l) - )F(Xk+l),

(yB k - Bkdk)dTk + dk(Y# - Bkdk)T (y' - Bkdk, dk)ykdTkBkI - Bk + k-_
(yk, ak) (Yk, dk)2

The updated Bk+1 satisfies the quasi-Newton condition:

Bk+ldk•, yk

Dennis, Gay, and Welsch[1981] developed this special symmetric secant update for a least square solution of

non-linear equations. For the smooth case, they show this update solves the following least change problem:

min II(TT)-1 (Bk+l - Bk)T-t'I

Bk+I E Rnxn

subject to Bk+1 - Bk symmetric, Bk+ldk = y,

where T E Wnn, a weighting matrix, is non-singular and satisfies TTrdk = y!.

Since this method is specially tailored for the least square solution of non-jinear equations, it is an

appropriate quasi-Newton method to extend to the least square solution of inequalities of non-linear convex

C 2 functions. This update is called a resealed symmetric secant update, because of the weighting matrix T.

This update and the unscaled update are analyzed in Dennis and Walker[1981] for the smooth case. Local

convergence analysis of quasi-Newton methods for generalized differential constructs requires that we define

a bounded deterioration property for the updates, Bk.

Definition. Bounded Deterioration Property for Generalized Hessians.

Let N(x.,r) be an identification neighborhood of a stationary point x., with iterates Xk E N(x..r).

Define J(xk) E OF+(xk), by (J2(xk)), = 0, for i E f 0 (xk). (Note that for indices i t- I+(xk) U -(xk),

that J2(xk))i is unique.) Define J; i= 9F.(x.) to be the generalized Jacobian which models x5 - x., as

defined in Proposition 5.2.2, and choose (Jf)' = 0 for indices i E f°(x.). (Again. note that for indices

i E V!(x.)U Vl(x.), that (Jf)i is unique.) Say the updates Bk, such as in (6.1.2.1), satisfy the bounded

deterioration property if there exists an a, such that for all k,

Ild•÷t~k.,_ _. 1J ) T Jk + Bk+ I -Ql<-IJkJ (jk) j + Bk - Q. 1) + a maxo)Xlx I - Xo;I, lJXk - X°- P

(6.1.2.2)
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The particular Jk E aVf(xk) and Jk E OVf(x.) that are chosen allow consistent comparison of (6.1.2.2) at

each iteration k. Since in an identification neighborhood, 10 (xk) C I1(x.), and since Jk models xk - x., the

distance between these two generalized Jacobians is the distance between the compact convex sets, aF(Xk)

and 8F(x.). One could choose other generalized Jacobians in the definition of the bounded deterioration

property if this selection of generalized Jacobian, J(xk) E e9F(x) is compared properly with the closest

element J(x.) E VF(x.). By choosing a particular generalized Jacobian at each iteration, (J(Xk)) = 0,

for i E I°(xk), and if the updates satisfy the bounded deterioration property, then q-linear convergence is

assured in some identification neighborhood, which is also a neighborhood of invertibility.

Theorem 6. Local Convergence of Symmetric Secant Method for Inequalities.

Let f be given as in (6.1). Let F1 be C 2 and F2 be C 2 convex. Let x. be given and assume Vf(x.) = 0.

Let N(x., r) be an identification neighborhood of x.. Assume V2 f, is Lipschitz continuous of some rank ,1

and let 12 be the order 1 Lipshitz constant of V 2 ½(F 2 (x), F2 (x)) on N(x,, r), where -y := 7Yl +Y2. Assume that

all generalized Hessians, H(x.) E aVf(x.) are invertible and satisfy on N(x., r), 11H-1(x.)II 11 /3, for some

/3. Suppose the sequence of iterates and updates (6.1.2.1), where the generalized Jacobians at Xk are chosen

so that (J(xk)), = 0, for i E I 0 (xk), satisfy the bounded deterioration property on N(x,,r) for some a.

Then there exists positive constants F and 6, such that if [Ixo - x. 11 < f and 11 J-!0 o - (Jo )TJ• + Bo - Q. 11 !_ 6,

then the sequence of symmetric secant update iterates generated by (6.1.2.1) are well-defined and converge

q-superlinearly to x,.

Proof. Choose f small enough to insure a neighborhood of invertibility of x,, choose 6 to satisfy:

6/36 < 1, (6.1.2.3)

and, if necessary, choose e sufficiently smaller to also satisfy:

3aE < 6, and 3-yf < 26. (6.1.2.4)

We prove the two statements (6.1.2.5) and (6.1.2.6) below, by induction on k:

ii J•k _ (j 1)Tjk + Bk - QII < (2 - 2-k)6, (6.1.2.5)

where Jk E (9F+ (x.) is the generalized Jacobian of Proposition 5.2.2 which models xk -x., and Jk E 9F+ (Xk)

is the generalized Jacobian chosen so that (J.)j = 0, for the indices i E I°(Xk) as in the definition of the

bounded deterioration property for generalized Hessians.

IIXk+1 - X.11 <-I1Xk - x.11. (6.1.2.6)

For k = 0, (6.1.2.5) is satisfied by assumption in the hypothesis. We show (6.1.2.6) in the induction step,

which is comparable to the case for k = 0. Assume (6.1.2.5) and (6.1.2.6) hold for k = 1,2 . .,I - 1.
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For k = 1, by the bounded deterioration property assumption, and the two induction hypothesis, then the

selected generalized Jacobians, Jr*, which models x, - x., and J, satisfy:

IIjI.j, _ (jl*)Tj + B1 - Q.II < (2 - 2-('-1))6 + alIx,-1 - x.11. (6.1.2.7)

Mrom (6.1.2.6) and given that I1xo - x. 1 < f, then

Ijxj,- - x*II <__ 2-('-')Ill•0- x*11 <--2-(I-I)f-

Substituting this into (6.1.2.7) and using (6.1.2.4) yields

IIJjj - (jl*)Tj* + B, - Q.1I 1 (2 - 2-(1-1))6 + a2-('-1)f

_ (2 - 2-(-'-) + 2-1)6 = (2 - 2-')6

which verifies (6.1.2.5). To verify (6.1.2.6), first show that JJ 1 + B, is invertible so that the iterates

are well-defined. Given by hypothesis that any generalized Hessian in 8Vf(x.) is invertible and satisfies

11H-I(x.)II <_ /, from (6.1.2.5) and the induction hypothesis (6.1.2.7),

jjH-1(x.)(j-r]• + B, - H(x.)Il _< IIH-l(x.)Il II(J7j 1 + B, - H(x.)Ilj </(2 - 2-')6 - 206 <

So, from the Banach lemma on invertibility of perturbed linear operators, Ji7rJ, + B, is invertible and satisfies:

ii(j-rj1 + BI)_1II < IIH-'(x.)Il < 3 33 (6.1.2.8)1 - jHIn (x.)(dTf , + B, - H(x.))Il - 1 - (
3

Thus, x1+1 is well defined and for the generalized Jacobian J* E aF+(x.) which models x, - x.:

jJxjt+ - x, II _1(. Fi 1 + B1)-l1I [11 - Vf(x.) + Vf(x1 ) + n*(x. - xi)II + II1(Jf, i + B, - nIll II(x, - xllHI]

where H,* := (jl*)Tj 1 * + Q. is the generalized Hessian which models x, - x.. From Lemma 3,

11 - Vf(x.) + Vf(x1 ) + HI(x. - xt)I 11 2

Substituting (6.1.2.5), (6.1.2.8), and from above:

IIXI I - X. 11 :ý3 [2j11, - x.II + (2 - 2-')6] lx, - X*. (6.1.2.9)

From (6.1.2.6), the hypothesis that jIxO -x, . -, and (6.1.2.4), then

"YllXI -X-.I <2 1  2-'6
2 3

which substituted into (6.1.2.9), gives:

IIxI+I - X.I11 < 3 [2- +2-2-' 6IlxI,- x1

< 3L361lxi - x.

< IIx - X. II
2
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with the final inequality coming from (6.1.2.4). This proves (6.1.2.6) for the induction step, 1. Using these

two induction results, it follows that the iterates converge q-linearly to x.. 1.

Dennis and Walker[1981J show the conditions for the smooth case for the bounded deterioration property

to be met. First of all, the set of matrices from which to choose the least change update, Bk, should include

the matrix Q.. Since Q. is symmetric, positive semi-definite, the symmetric secant update (6.1.2.1) satisfies

this condition. The other condition is whether there is some K such that for all k, y# satisfies:

ilYk - Q.(xk-•l - Xk)ll = II(J.+, -_ k)TF+(,,k+.) - Q.(xk-- - Xk)ll (6.1.2.10)
< ,Knmax{llxk - X-11, IIXk+1 -X -lI}llXk+1 -XkIl'

Notice that (6.1.2.10) is similar to the inequality in Lemma 4, which states the existence of a > 0 such that

for Q., Jk+1, Jk,

II(Jk+l - Jk)T F+(x.) - Q*,xk+1 - Xk)L 1_ a(41Xk -- xII + IlXk+1 - X. II)IIIXk+ I - Xk 1.

For the smooth case, where f is C2 , the authors show that the choice of

Yk := Vf(xk+l) - Vf(xk) - YT(xk+I)J(Xk+l)(Xk+l - Xk)

always satisfies the bounded deterioration property. However, they cite that update (6.1.2.1) works just as

well in test cases. Update (6.1.2.1) is used in NL2SOL algorithm, Dennis, Gay, and Walker[1981]. This

algorithm is a hybrid algorithm which uses the model trust region method (Levenberg-Marquardt), with

a zero matr'x, B0 , unless the secant update gives a better match between predicted and actual reduction.

The choice of comparison of generalized Jacobians and the global convergence of xk -- x. may assure this

condition (6.1.2.10) can be met in practice. For the smooth case, the authors show that NL2SOL performs

better in test cases than the Levenberg-Marquardt algorithm, especially for the non-linear, large residual

case.

Dennis and Walker[1981, Theorem 3.31 show for the smooth case that, if the iterates converge q-linearly,

then the iterates converge q-superlinearly if and only if

lim li(J•jk _ (Jk) T J* + B - Q,)(xk+l - Xk)II = 0 (6.1.2.11)k--00 Ilrk+1 -. :':al

6.1.3 Adaptation of Gauss-Newton for Convex Inequalities. If the residuals are small, it may be

advantageous to use the Gauss-Newton method for the nonlinear inequality case, since the computation is

somewhat simpler. We adapt the local convergence result for the case of inequalities of convex C2 functions,

combined with the non-linear equalities.

Theorem 7. Local Convergence of Gauss-Newton for Solving Least Square Solution of System of Inequalities

of Convex C2 Minctions and Non-linear Equalities.

Let F1 (x), F2 (x) be given as above and

f(x) := ft(x) + f2(x):=- (F1 (x), F,(x)) + 2(F2(x), F2(x)),
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and assume F2 is C 2 convex, and that F1 is C 1 . Assume the following:

1. f,(x) is continuously differentiable in an open subset, D C R' and let J, (x) be Lipschitz continuous on

D, of some rank -yI.

2. There exists x. E D, such that Vf(x.) = 0.

Assume that on the identification neighborhood N(x., r) C D, that the following are satisfied:

3. J1 is bounded on N(x., r).

4. There exists a > 0, such that, for all x E N(x., r), for any choice of generalized Jacobian, J 2 (x), J 2(x,),

II(j,(X) - J,(x.))T F1 (x.) + (J 2 (x) - J2(X,)) TF2-(X,)II < UllX - X.11. (6.1.3.1)

5. A, the smallest eigenvalue of f"(x.)J(x.), for any choice of generalized Jacobian, satisfies:

A>a.

Then there exists c E (1, A), and there exists F > 0 such that for all x E N(x., f) and for any choice of

generalized Jacobian

II(JT (x)J(x))-
1 11 < . 'C

and for all xo E N(x., r), the Gauss-Newton iterates

xk+1 = Xk - (J(xk)TJ(xk))-lJ(xk)TF(xk)

are well-defined, converge to x. and satisfy, for some -y > 0 and for all a where IIJ(x)II < a, for all

x E N(x., r):

IIXk+1 - x.ff _ X, - x.I1 + O 11,,- x.11', (6.1.3.2)
T~ 2,\

ca+A

IIxk+- XII <__ -'- +-- k -z I< Ik -x.11 (6.1.3.3)

Proof. Since any generalized Jacobian satisfies that II(J(xk)TJ(xk))-I <_ and since c > 1, then

Proposition 1.3.1 assures a neighborhood of x., such that II(fr(x)J(x))-'I _ 1 . By 1, since J, is Lipschitz

continuous on N(x., r) of some rank -y, and since F2 is C2 convex, choose f small enough to insure a

Proposition 5.2.1 identification neighborhood. Then Proposition 5.2.2 holds for some _Y2. Thus, ther- is

-y = + ,y2 > 0, such that any generalized Jacobian of F at x E N(x., r) satisfies:

IIF(x.) - F(x) - J(x)(x. -_ X)11 < 11X. - X112.

The proof of the theorem follows directly the pattern of Theorem 1. 11

If the residual of F(x.) is zero, just like in the linear case, convergence is q-quadratic. This is similar

to the result of Burke[19831 for his Gauss-Newton like projected steps. He also discusses the Mangasarian
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fromowitz Constraint Qualification (MFCQ) at a given point x. The MFCQ for a given point x is satisfied,

if there exists a direction p, such that

(VF2(x),p) < 0 where i E 10 (x) U I+(x),

(VF'(x),p) = 0 where i = l. ml, (MFCQ)

and {VFI'(x)Ii = 1,..., ml} are linearly independent.

Robinson showed that if a point x satisfies the MFCQ condition, then the condition is satisfied for all points

in some neighborhood of x. Using this result and a result of Daniel[1973], Burke showed that his Gauss-

Newton directions, starting from a point in an identification neighborhood of a stationary point x. having

f(x.) = 0, where the MFCQ holds for some other point x in this neighborhood and f(.t) = 0, then the

iterates converge q-quadratically to x,.

The local convergence behavior of Levenberg-Marquardt directions for the general convex case is compa-

rable to Gauss-Newton. The applicability of either of these methods depends on how nonlinear the function

F is at x* and on the size of the residual at x., as is discussed in section (4.1.1).

6.2 Global Convergence Results

Both global convergence results are applicable as in the case of linear inequalities. The Armijo line search

follows directly without adaptation, since Vf 2 (x) is Lipschitz continuous of some rank -y on the lower level

set of the first iterate, since F2 is convex and C 2 . By assuming that Vfl(x) is Lipschitz continuous of some

rank on the lower level set of the first iterate, then the Armijo line search conditions are satisfied.

Similarly, the global trust region method using generalized Hessian model function also follows directly.

Since F2 is convex and C 2 , then, in an identification neighborhood of any accumulation point, the Hessian

model function converges quadratically to f2. By assuming that F, is C2 , the conditions of the generalized

Hessian model for the global trust region method are satisfied.
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7 Applications

The least square algorithm developed in previous sections can be used to solve the assignment problem

subproblem (2.5.1) as well as other common optimization problems, such as linear programming problems

and the linear complementarity problem. In section 7.1, we develop algorithms to solve the piece-wise linear

assignment problem in section 2. The algorithm calls subroutines based on Han's algorithm for solving

systems of linear inequalities in a least square sense and the algorithms developed in section 4 for solving

systems of linear inequalities and nonlinear equations. The local minimum stationary point returned as a

solution to the subproblem (2.5.2) may not yield a global minimum of the least square formulation. We show

that non-global local minimum stationary points are either associated with a w-component vertex which is

not a possible {O, 1 } solution, or there is no solution with integral w-component. In the latter case, one can

form cutting planes and reformulate the relaxed problem. Based on the assumption that proper starting

points can be found for each iteration (corresponding to vertices of the w-component where wj = 0 or 1), the

algorithm terminates finitely in a solution with integral w-component or finds that no solution exists. The

global convergence property of the least square algorithms in section 4 gives the potential for fewer than 21

iterations. In section 7.2, we show how the the relaxed linear programming problem can be formulated as

system of linear inequalities and equalities which can be solved using Han's algorithm. Combined with the

nonlinear equations, the problem represents the peice-wise linear assignment problem subproblem (2.5.1)

which can be solved by the algorithm developed in section 7.1.
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7.1 Solving the Piece-wise Linear Assignment Problem

Recall that a solution w, y, z of the relaxed primal generated by r, u, z' which solves the dual problem in (2.2)

is a soliti, to a systeni of linear inequalities and equalities with respect to the following index sets

. {j1 r, E (0, 1} 1 11O2 = j 01, =

I":- {jir, l } 'z-s ZC1JY,Jv = Z, > Ž,,o,

1< 0{j r -o} = Jy,,j < 'jOj = zI

I" {l - ",,j t IL - c,.r, < 0} .== Yi. 3 = 0

v: {Id ,.j > 0} = Y, = W.3

Ilere w. y, z satisfy: v,,J = 0, Vi E j,Vj
yj > 0, Vi, j

y,. = I, Vi

Y,,j = W V, Vi EI , Vj

Kia <- wj, Vi, j

w) < 1, Vj (7.1.1)

t 3 I-wj) =0, V3

Z 1 .3y1 ,= zj = wjOj, Vj E J=

Z c,,, = z_ 2! wjOj, Vj E J>

Zctj y,,) zj = wj (j, Vj E J<-.

Let P : ( u{. y, z)l which satisfies (7.1.1)} be the nonempty convex polyhedral relaxed primal solution set

zenerated by a single dual solution. (Note that z is an auxillary variable and would not be used in the

computation.) Consider P as the non-empty convex polytope in Rn "m, (by eliminating the variable z).

All points in P have wi E [0. l[. As in section 2.5, use the single variable x to represent the variable

, ,. y) Define the function F1 to represent the nonlinear forcing function of w, where (FI), : R '- R, and

(l(x)) : - uw( I - w,). Let the matrix A and the vector b represent the linear transformations in the

inequalities, and the matrix C and the vector d represent the linear transformations in the equalities. The

least square algorithm for solving systems of non-linear equations and linear inequalities returns a local

minimum stationary point x. which solves in a least square sense:

Fi(x) = 0,

Ax < b, (7.1.2)

Cx = d.
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Now, define F: W""n ip •RP, where p = m + 4n + 2mn + Ej(II]I + IZ1-). (The notation II°I means the

cardinality of the set I1. ) Then

F, (x)F, (x)
F(x) |(Ax- )= -F 2 ()

\ (Cx - d) \F 3(x))

Let f "n•,-mn W be defined:

f (x) := f(x) + f 2 (x) + f 3 (x), where

MX() := (F,(x), F2(x)),2

1f2(I) ((Ax - b)+, (Ax - b):

f3 (X) := ((Cx - d), (Cx - d)).

Observe that the w-component vertices of [0, 1in are determined by wj = 0 or 1 for each j. A convex

subset of [0, 'In associated with each vertex is determined by 0 < wj < I or < wj < 1, for each j. There

are 2 n of these subsets, one associated with each w-component vertex. The minimum of f, (x) on each of

these subsets is attained at the associated w-component vertex. Points having wj = -½ for some j are not

identified with any of the vertices. We show the following property about local minimum stationary points

of f.

Proposition T.1.

If x. is a local minimum stationary point of f, then x. satisfies:

1.) If x, E P, then wj E (0, ½, 1}, for allj. If f(x,) = 0, then w* E {0, 1}, for all j.

2.) If x. 0 P and if w* for some j, then for all x E P, the only feasible choice is wj1= for these j.

Proof. The first result uses the property that Vf 2 (x.) + Vf3 (x.) = 0, for x. E P. The solutions of

Vf1 (x) = 0 satisfy:
( *) - (w*)2(1 -j W) = 0,

which implies w; E {0, 1, -½}. Then if f(x.) = 0, it must be that w* E {0, 1}.

For the second result, in order that x, is a local minimum stationary point, then Vf(x,) = 0. If there

exists a,/3 such that 0 < a < - /3 < 1, a c f, and la,,3 is feasible for wj, then x. is not a local

minimum stationary point. Rather, the w• component is a local maximum stationary point with respect to

this component. Otherwise, ýuppose there exists a _< 3, wher,ý either a,/3 E [0, -1) or o,/3 E (½, 11 and [a, 31

is feasible for w,. Consider:

(Vf(X)) = (w, - a) + w2(l - w,,j) - ,(l - )

evaluated at wj =2

(V- -) <0.
2
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This means x. with w= is not a local minimum stationary point. Similarly,

(Vf(x))j = (w 3 -/3) + w2(1 -wj) - w (I -_wj)2

evaluated at w= 2,

=(-1)>0.
2

Again, this means x. with w= ½ is not a local minimum stationary point. Because of the convexity of P.

these are the only possible types of feasible regions, and so the only possibility for x. to be a local minimum

stationary point with wj = ½ for some j is that the only feasible choice for these wj is wj = 1. 11
2 2

This proposition assures that local minimum stationary points with any w* = ½ represent a condition

where there is no point with w integral in P. Further, any other local minimum stationary point has all

w* # I. Thus, in the case that f(x.) $ 0, one can identify a vertex of the w-component associated with

this point, or if any of the w= then no solution with integral w-component exists. It follows in the
2'

case where f (x.) 54 0 where no w=½ that the cc.-responding w-component vertex is not the w-component

vertex of a possible solution.

The cutting plane method to solve integer programming problems originated in the work of Gor-

mory[1960,1963] and is described in elementary texts such as Garfinkel and Nemhauser[19721. Conn and

Cornu6jols[1990], Cornu6jols et al[19891, and Ahn et al[19881 describe the cutting planes that generate facets

of the uncapacitated facility location polytope. This polytope is the convex hull of the solution set of:

min z3

subject to:

wj-y ij_>0, Vi,j

-03W3 + z7 _0, V-

-~c~ 3 y~~z 3Ž0 Vj(7.1.3)--qc,jyi,j + zj >0, Vi

SYij =1, Vi

Yij >0, Vi,j

wj E {0, 1}, Vi.

The following cutting plane:

Yo,? + Yp,h + Yp,i + Yq,L + Yq,k + Yo,k - Wh - W1 -- Wk ! 1 (7.1.4)

defines a facet of the uncapacitated facility location polytope for any h, 1, k E J, and o, p, q E I, such that

h # I k and o j p j q. It cuts off fractional basic solutions of (2.1.2) the relaxed primal solution, where all

the variables in (7.1.4) take the value -. The authors show examples of using these special cutting planes,
2

where, after just a few iterations, a {0, 1 } solution is feasible.
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We describe an algorithm to find a {O, I} solution for the problem in section 2. Define LLS(P) to be

Han's algorithm which returns a least square solution x* of P define by (7.1.1), as well as residuals r.. Define

NLLS(f) to be the algorithm which returns a local minimum stationary point, x., of f generated by (7.1.2),

which is a least square solution to a system of non-linear equations and linear inequalities. The algorithm

calls both LLS(P), NLLS(f). Consider I E V, where initially V = {1, 2,..., 2 n} represents the vertices of

the w-component of x. For each I E V, choose an initial starting point with the associated w-component

vertex, selecting wj = 0 or I appropriately. If P contains points having w-component in this subset of [0, lin

associated with the particular w-component vertex, then if one chooses a starting point in P, identified with

this w-component vertex, then the algorithm NLLS(f) should converge to a point with the same identified

w-component vertex. Thus, one way to choose the starting points for NLLS(f) is to call Han's algorithm to

find a feasible point in P and associating wj = 0 or I depending on the closest endpoint. However, after

several iterations, one may not find different vertices based on points in P. Another approach is to choose

a starting point based on a particular w-component vertex where the y-component of the point xO satisfies

the conditions in (7.1.1) in a least square sense. Then, call NLLS(f) with the starting point and test the

conditions of Proposition 7.1. If f(x.) = 0, then the algorithm has found a solution where the w component

is integral. If any of the w• = 1, then the algorithm stops and using cutting planes described by Conn and

Cornu~jols[1990], a new problem is formulated, feasibility is restored, and a new set P is formed. Then, one

can again run the algorithm below with this new set P. Lastly, if x. ý P, then none of the w• = -½ and there

is an associated w-component vertex of x.. If this vertex is the same as that of the initial point, then this

vertex is removed from the list V. If the the initial vertex is different, then, since the initial starting point

was chosen with its w-component in this subset of [0, 11' with y-component as close as possible to feasibility,

then one can remove this initial starting point vertex from the list as well. Because of the convexity of P, if

there are any points of P having w-components in this subset, then the algorithm NLSS should find this local

minimum with its w-component within this subset. Finally, the algorithm iterates selecting another vertex

from the list V. If at any iteration, both endpoints of some wj are found to be infeasible, then Gomory

cutting planes would be developed to cut off non-integral solutions, the relaxed program reformulated and

using a new set P, the algorithm would be rerun.

The algorithm is shown below:

Algorithm using NLLS and LLS:

V = {1,2,...,2'};

P is the set defined by (7.1.1) or by cutting planes;

ITER:

SELECT I from V; (Choose vertex from V 5 0)

SET x0 ; (calling LLS(Py) with set w-component and y-compoitent as variable.)
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x. = NLLS(f); (where f is the function defined by the set P.)

IF f(x.) = 0, THEN done; (x. is an integral solution)

IF ANY w 2 = -, THEN quit; (Use cutting planes to form new relaxed program and new set P)

(Thus, x. is infeasible and no w=4

= w-component vertex of x0;

V = V\{1}; (Remove initial vertex from V.)

1, = w-component vertex of x.;

IF 1 5 1., THEN V = V\{1,};

FOR j = 1 TO n; BEGIN;

IF wj = 0 or 1 both infeasible THEN quit;

(Use Gomory cutting planes to form new relaxed program and new set P.)

END;

GO TO ITER;

This algorithm terminates finitely if an integral w-component solution exists in the set P. At each

iteration, at least one different vertex is removed from the list. The above algorithm chooses all starting

points for calling NLSS based on an associated w-component vertex, setting the wj = 0 or I depending on

the vertex. If a point in P has this w-component vertex, then LSS algorithm would find a solution with

this integral w-component. If not, then the point returned from LSS gives the least square solution in the

y-component having this associated w-component vertex. If there are points in P having w-component in

the subset associated with this w-component vertex, then NLSS (using this starting point) finds the local

minimum stationary point with the same associated w-component vertex. If the starting point is the least

square solution of the y-component with a given w-component vertex, then if the NLSS algorithm converges

to a point having a different w-component vertex, then one can eliminate both w-component vertices from

consideration. Thus, it is possible that two different vertices are removed at an iteration. If after sufficient

number of possible w-component vertices are eliminated, one finds for some j such that wj = 0 or I are

both eliminated, or if the NLSS algorithm finds a leoal minimum stationary point with some w,* = ½, then

no point in the set P has integral w-component. One would then form cutting planes and a new set P and

rerun the algorithm.

This algorithm calls LSS at each iteration in finding starting points and calls NLSS once each iteration.

The global convergence property of the algorithms in section 4 provides the potential that fewer than 2"

iterations are needed.
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7.2 Solving Linear Programming Problems

Han[19801, Mangasarian[19811, and Stewart(19871 describe using iterative continuous algorithms to solve

linear programs. Specifically, Han's algorithm could be used to solve a linear complementarity problem

which takes , , same form as the solution set of a linea- program. One might also use this algorithm to

solve the relaxed linear program described in section 2. Using the duality property, the optimal solution of

the primal problem (2.1.2) and the optimal solution of the dual problem (2.2.1) must satisfy:

Z j U, - tj,

in addition to satisfying all the constraints in both problems. Therefore, one could formulate a convex set.

P, in the space of the combined primal and dual variables, where P satisfies:

3 i 3

wj-y ,,j_0, Vi,j

-Ofwj + Zj > 0, Vj

- Z ci,jyi,j + zŽ 0, Vj

Z yej - I, Vi

y•ij 0 , Vi,j

wj 1, Vj (7.2.1)

SVj - 0.Sj= 0, Vi

-v,, 2 + ui - cqjr, <0, Vi,j

sj+rj -- 1, Vj

vi _ 0, Vi,j

sj 0, Vj

rj>0, Vj

t3  O. Vi

The solution set P represents all the solutions to the relaxed linear programming problem, unlike using a

single dual variable to generate a reduced solution set. One may consider using P generated by (7.2.1) and

the algorithm to solve for an integral solution. This avoids the iterations needed to find other dual solutions,

since the entire solution set of the relaxed problem is characterized by (7.2.1).
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8 Examples of Algorithm

For the example problem, the strategy as suggested in 7.2 is used to characterize the full set of solutions

of the dual problem and search within this set for a {0, 1} solution. Recall from section 2, the full set of

solutions of the example prohlem satisfy: y~j = 0, except as follows:

3
Yi.1 = wl=, Y2,3 = Y4 ,3 = W 3 =1. Y3,3 = -,

and W2 , Y3,2, and Y3.1 satisfy:

6
W2 <_ .Y3,1 >- -'•640'

41 4
Y32 = - Y3,1, 0 <_ Y3,2 - w 2 -Y3, 2.44 3'

One can simplify, eliminating the variable y3.1 which is fully determired, and expr.'-s as a problem in two

variables, w and y:
-y <0,
43

y- - <0,
55-

Y-w <0, (8.1)

w 4-4y < 0,
3 -

w - <_0.

Expre.ssng f(x) = f(w, y):

f(x) = (w2(l -w)2 + (_y)2 + (y _ 43)22 55 + (8.2)

+ (Y - W)+ + (W - Y)+ + (w - I))

See the contour plot of f(x) shown in figure 3 below, where one observes there are local minina stationary

points -L w = 0,y = 0, and w = ly E [3, ]43

y

6 0.2 0.4 0.6 0.8

w

Figure 3. Contour Plot of f(x)
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For this problem,

0 1 55
,= -1 1) b=(0

1 0

An example using the Gauss-Newton like algorithm to solve (7.3.2) is illustrated, using initial starting point

X0 = (w,y)T = (1, I)T.

Initial Iteration: f(xo) = (L)22 O(xo) = {3, 5}, I-(xo) = {1,4}, and I+(xo) = {2}.

0~~~ ~ 1 '(o= a l

ý30

where a E [0, 1] and 3 e [0, 1]. Selecting the generalized Jacobian J2(xo) E O(Axo - b)+, where a = 3 0,

one calculates:

J T (xo)J(xo) J T (x0)J(X°) + J T (x°)J(x°) = and do =-Vf(xo)

Iteration 1: Choosing stepsize Ao = 1, then

so x, solves (7.3.2), with f(x 1 ) = 0. Therefore, x, also solves the assignment problem.

If a different generalized Jacobian, J 2 (xo) E a(Axo - b)+., is chosen where a I3 = above, then

j T (xo)J(xo) = 21) and do = -(J T (xo)J(xo))-'Vf(xo)=

Iteration la: Choosing stepsize \o = I gives

X1=(0.9564)\ V (X) -0.0381)"
1 - \0.8691)' VJ(x1 ) = K 0.0873

1°(xi) 0, I-(xi) = {1,3,4,5}, and I+(x1 ) = {2}. Notice that for x. = (1, 3)T, that x, is in an

identification neighborhood of x., where 10(x.) = {2,5}, 1-(x.) = {1,3,4}, and I+ (x.) = 0. Since fJ( x l )

0, then J 2 (xl) E O9(Axi - b)+ is uniquely determined:

j T (Xl)j(XI) (0.8331 0) and d, ( 0.04573)0 1 (-0.0873)"

Choosing stepsize 1 = 1 gives Iteration 2a:

2 ( 0.7818)' (x2)=

I°(x 2 ) = {2}, VI(x.) t{1,3,4}, and I+(x.) = {5}, Choosing J 2 (x 2 ) E (Ax 2 -b)+, then

00

0 i e T2.0084 0 ) 0n 62
J2(x2) = ( 0 gives J0(x 2 )J(x 2 ) 0 and d 2

Choosing stepsize ,\ 2 = 1 so that

d2 = (-0.0021) gives X3( ) I X3 )= 0, Vf(X3 )()6
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9 Conclusions

We have developed methods based on continuous optimization to solve a special type of assignment problem.

having piece-wise linear additive separable cost functions. This problem is not easily solved using combina-

toric methods, due to the nonlinear cost function. Further, common continuous optimization methods do

not handle the {0, 1 } contraints. The strong relaxation of the {0, 1 } constraints yields a linear program or.

equivalently, a system of inequalities and equalities. Adding nonlinear equations to this system to force a

(0, 1} solution yields a problem which we showed can be solved using least square methods. We developed

algorithms extending methods such as Gauss-Newton, Levenberg-Marquardt, Newton's, and quasi-Newton,

for deriving search directions, and global convergence algorithms based on the model trust region method

and inexact line search. We have developed the details of these new algorithms and an overall theory for

local and global convergence for both linear inequalities as well as systems of inequalities of convex C2

functions. This work in non-differentiable optimization is based on on fundamental properties of generalized

differentiability. We showed that these properties are useful in developing theoretical convergence results of

these new algorithms to solve a special type of problem, least square solution of finite systems of inequal-

ities. The local convergence theory uses the special approximating property that the Taylor series based

on the generalized differential constructs possesses in an identification neighborhood of a stationary point.

We developed and verified new approximating results for both the case of linear inequalities and systems of

inequalities of convex C2 functions, as well as the details of selecting generalized differential constructs. From

this, we developed algorithms based on Gauss-Newton, Levenberg-Marquardt and Newton's methods, using

generalized differential constructs and showed that local convergence properties are similar to the smooth

case. We developed a comparable method based on quasi-Newton updates, defined a bounded deterioration

property for generalized Hessians, and, assuming this property, verified local q-linear convergence.

The global convergence of the Armijo line search, which we showed can be used directly with no mod-

ification, depends on the Lipschitz property of the gradient of the convex least square function on lower

level sets. We extended the global trust region method to handle systems of inequalities by using a model

function based on generalized Hessians and verified convergence.

We developed an algorithm to solve the original assignmer,- problem using the algorithm for solving

systems of nonlinear equations and linear inequalities. This overall algorithm either finds a {0, 1 } solution

within the relaxed problem solution set, or it determines that no such solution exists, thus requiring cutting

planes be added to the relaxed problem formulation. We developed and verified a property of local minimum

stationary points of the least square formulation which, along with proper choice of starting points at each

iteration, assures that the assignment problem algorithm converges, that is, either a solution is found, or

it is confirmed that none exists. We showed how to formulate the relaxed problem as a system of linear

inequalities and equalities which can be solved using Han's algorithm.

This work demonstrates strong solvability properties by using the Euclidean norm for regularizing a

non-differentiable function into a differentiable function, as well as the increased solvability of transforming
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a discontinuous problem into a continuous problem. As shown, the least square formulation is numerically

stable to small perturbations of computational inaccuracies. The least square formulation for solving the

system of inequalities and equalities yields a solution even if the system is infeasible. The least square

formulation, although not equivalent to the original assignment problem, yields important information about

local minimum stationary points of the least square objective function for the assignment problem. Further,

the least square formulation for solving systems of inequalities provides a useful tool for other applications,

such as solving linear programs and linear and non-linear complementarity problems.

Further work would address more general functions, especially non-convex functions. Also, further work

should treat the invertibility assumptions made for local convergence results, deriving the specific conditions.

such as the MFCQ, which assure invertibility, similar to Burkel19831, Harker and Pang[19901, and Harker

and Xiao[1990). In addition, the specific conditions which assure the bounded deterioration property for the

secant update in the quasi-Newton algorithm need to be developed.

Lastly, the theoretical algorithms developed herein should be implemented and tested on large scale

problems, giving a basis for practical comparison with other algorithms and comparison with smooth prob-

lems.
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